首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The slowing-down Boltzmann equation for generalized boundary conditions is considered and transformed to one-speed equation in Laplace space. Exact relations between energy reflection and transmission coefficients for a problem with diffuse reflecting boundary conditions and the albedos for the problem with isotropic boundary conditions are obtained. The Galerkin method is used to calculate the energy reflection coefficient for a finite slab for different thicknesses at different mass ratiosA, target to projectile mass, at different synthetic-scattering kernels. The results for partial heat fluxes for isotropic and anisotropic-scattering dispersive medium are given. The results obtained for isotropic boundary conditions are compared well with the exact results.  相似文献   

2.
Families of nearly circular periodic orbits of the planetary type are studied, close to the 3/1 mean motion resonance of the two planets, considered both with finite masses. Large regions of instability appear, depending on the total mass of the planets and on the ratio of their masses.Also, families of resonant periodic orbits at the 2/1 resonance have been studied, for a planetary system where the total mass of the planets is the 4% of the mass of the sun. In particular, the effect of the ratio of the masses on the stability is studied. It is found that a planetary system at this resonance is unstable if the mass of the outer planet is smaller than the mass of the inner planet.Finally, an application has been made for the stability of the observed extrasolar planetary systems HD82943 and Gliese 876, trapped at the 2/1 resonance.  相似文献   

3.
We have studied the stability of finite gaseous discs, against large-scale perturbations, under the influence of spherical, massive haloes. A surface-density distribution consistent with the observed spiral-tracer profiles in disc galaxies is considered for the disc. We find that growing eigenmodes with both ‘trailing’ and ‘leading’ spirals exist in ‘cold’ discs for a wide range of values of the halo mass and its radius. The amplification rates of the unstable modes reduce as the ratio of the mass of the halo to the mass of the disc is increased. A uniform halo is not very effective towards stabilizing the disc against these modes. The results from the present study are consideredvis-a-vis previous studies on the global modes of self-gravitating discs.  相似文献   

4.
The restricted problem of three bodies with variable masses is considered. It is assumed that the infinitesimal body is axisymmetric with constant mass and the finite bodies are spherical with variable masses such that the ratio of their masses remains constant. The motion of the finite bodies are determined by the Gyldén-Meshcherskii problem. It is seen that the collinear, triangular, and coplanar solutions not exist, but these solutions exist when the infinitesimal body be a spherical.  相似文献   

5.
The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr black holes (BHs), the so-called fly-wheel (rotation driven) model. The fly-wheel engine of the BH–accretion disc system is applied to the statistics of QSOs/AGNs. In the model, the central BH is assumed to be formed at z ∼102 and obtains nearly maximum but finite rotation energy (∼extreme Kerr BH) at the formation stage. The inherently obtained rotation energy of the Kerr BH is released through a magnetohydrodynamic process. This model naturally leads to a finite lifetime of AGN activity.
Nitta, Takahashi & Tomimatsu clarified the individual evolution of the Kerr BH fly-wheel engine, which is parametrized by BH mass, initial Kerr parameter, magnetic field near the horizon and a dimensionless small parameter. We impose a statistical model for the initial mass function (IMF) of an ensemble of BHs using the Press–Schechter formalism. With the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density of QSOs/AGNs.
By comparing with observations , it is found that a somewhat flat IMF and weak dependence of the magnetic field on the BH mass are preferred. The result explains well the decrease of very bright QSOs and decrease of population after z ∼2.  相似文献   

6.
It is shown that during contact eclipsing binaries evolution under the influence of stellar wind, magnetic stellar wind and with matter transfer by gas flow, in binary stellar systems there may take place a process of star merger (low mass stars) within 105–107 yr and a fast increase of distance between stars of massive binaries. W UMa-type stars are a finite evolutionary stage of very close and low mass binary pairs. As for contact systems of early spectral types (CE-systems), they are more varied in evolution.  相似文献   

7.
In an investigation of the evolution of homogeneous, isentropic, stars through stages of diminishing entropy, Rakavy and Shaviv (1968) have recently found that stars of mass less thanM c (Chandrasekhar's limiting mass for white dwarfs) evolve into white dwarfs, while stars of mass greater thanM c approach a (singular) state of minimum entropy. An elementary explanation of these results is given and qualitative effects of general relativity are discussed. It is found that stars which are lighter than the Oppenheimer and Volkoff (1939) limit become white dwarfs, while heavier stars must become dynamically unstable at a finite stage in their evolution.  相似文献   

8.
The excursion set theory of halo formation is modified by adopting the fractional Brownian motion, to account for possible correlation between merging steps. We worked out analytically the conditional mass function, halo merging rate and formation time distribution in the spherical collapse model. We also developed an approximation for the ellipsoidal collapse model and applied it to the calculation of the conditional mass function and the halo formation time distribution. For models in which the steps are positively correlated, the halo merger rate is enhanced when the accreted mass is less than  ∼25 M *  , while for the negatively correlated case this rate is reduced. Compared with the standard model in which the steps are uncorrelated, the models with positively correlated steps produce more aged population in small mass haloes and more younger population in large mass haloes, while for the models with negatively correlated steps the opposite is true. An examination of simulation results shows that a weakly positive correlation between successive merging steps appears to fit best. We have also found a systematic effect in the measured mass function due to the finite volume of simulations. In future work, this will be included in the halo model to accurately predict the three-point correlation function estimated from simulations.  相似文献   

9.
In this paper we analyse the relations between a previously described oblate Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974, and obtain the length and velocity scales for a relevant elliptical galaxy model. We then derive the finite total mass of the model from these scales, and finally find a good fit of an isotropic oblate Jaffe model by using the Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC 2974. The model is also used to predict the total luminous mass of NGC 2974, assuming that the influence of dark matter in this galaxy on the image, ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible within the central region, of radius 0.5R e.  相似文献   

10.
Recently, a very large clustering length has been measured for quasars at a redshift of   z ∼ 4  . In combination with the observed quasar luminosity function, we assess the implications of this clustering for the relationship between quasar luminosity and dark matter halo mass. Our analysis allows for non-linearity and finite scatter in the relation between quasar luminosity and halo mass, as well as a luminosity dependent quasar lifetime. The additional novel ingredient in our modelling is the allowance for an excess in the observed bias over the underlying halo bias owing to the merger driven nature of quasar activity. We find that the observations of clustering and luminosity function can be explained only if both of the following conditions hold: (i) the luminosity to halo mass ratio increases with halo mass; (ii) the observed clustering amplitude is in excess of that expected solely from halo bias. The latter result is statistically significant at the 99 per cent level. Taken together, the observations provide compelling evidence for merger driven quasar activity, with a black-hole growth that is limited by feedback. In difference from previous analyses, we show that there could be scatter in the luminosity–halo mass relation of up to 1 dex, and that quasar clustering cannot be used to estimate the quasar lifetime.  相似文献   

11.
We explore the dependence of the subhalo mass function on the spectral index n of the linear matter power spectrum using scale-free Einstein-de Sitter simulations with   n =−1  and −2.5. We carefully consider finite volume effects that may call into question previous simulations of   n < −2  power spectra. Subhaloes are found using a 6D friends-of-friends algorithm in all haloes originating from high-σ peaks. For   n =−1  , we find that the cumulative subhalo mass function is independent of the parameters used in the subhalo finding algorithm and is consistent with the subhalo mass function found in Λ cold dark matter (ΛCDM) simulations. In particular, the subhalo mass function is well fit by a power-law with an index of  α=−0.9  , that is the mass function has roughly equal mass in subhaloes per logarithmic interval in subhalo mass. Conversely, for   n =−2.5  , the algorithm parameters affect the subhalo mass function since subhaloes are more triaxial with less well-defined boundaries. We find that the index α is generally larger with  α≳−0.75  . We infer that although the subhalo mass function appears to be independent of n so long as   n ≳−2  , it begins to flatten as   n →−3  . Thus, the common practice of using  α≈−1.0  may greatly overestimate the number of subhaloes at the smallest scales in the CDM hierarchy.  相似文献   

12.
The aim of the present investigation has been to establish the minimum distance (commonly referred to as the ‘Roche limit’), to which a small satellite can approach its central star without the loss of its stability. In order to do so, we shall depart from hydrodynamical equations governing small oscillations of stellar structures, and set out to establish the limit at which their distorted form of equilibrium can no longer vibrate periodically in response to arbitrary perturbations. To this end, such equations will be rewritten in terms of curvilinear Clairaut coordinates (Kopal, 1980) in which the gravitational potential defining equilibrium surfaces plays the role of the radial coordinate; and their solution constructed for the classical Roche problem in which the oscillating satellite of infinitesimal mass consists of material which is homogeneous and incompressible, while its primary component acts gravitationally as a mass-point. The outcome of such a solution agrees satisfactorily with that previously established by Chandrasekhar (1963) on the basis of the virial theorem; but the method employed by us lends itself more readily to a generalization of the Roche limit to systems of finite mass ratios and consisting of the components of finite size.  相似文献   

13.
报道Kerr黑洞周围一般轨道中,静质量m≠0的束缚粒子短程线的物理性质.根据粒子运动方程,用数值计算方法得到了在轨两类粒子的存在判据和粒子的轨迹,给出了不同运动积分常数条件下,粒子短程线参数的变化规律.  相似文献   

14.
We present a well behaved class of Charge Analogue of Heintzmann (Z. Phys. 228:489, 1969) solution. This solution describes charge fluid balls with positively finite central pressure and positively finite central density ; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of constant K (1.25≤K≤15) for which the solution is well behaved and therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=1.25 and X=0.42, the maximum mass of the star comes out to be 3.64M Θ with linear dimension 24.31 km and central redshift 1.5316.  相似文献   

15.
The physical characteristics radius, mass, mean density, gravitational potential and acceleration, gravitational and internal energy are presented with the aid of the gamma function forN-dimensional, radially-symmetric polytropes. The virial theorem with external pressure is derived in the relativistic limit, with Newtonian gravitation still valid. The gravitational energy of polytropes obeying the generalized Schuster—Emden integral is shown to be finite. Finiteness of mass and radius is discussed for the cases of practical interestN=1 (slab),N=2 (cylinder), andN=3 (sphere). Uniform contraction or expansion ofN-dimensional polytropes is considered in the last section.  相似文献   

16.
In this paper we have proved the existence of libration points for the generalised photogravitational restricted problem of three bodies. We have assumed the infinitesimal mass of the shape of an oblate spheroid and both of the finite masses to be radiating bodies and the effect of their radiation pressure on the motion of the infinitesimal mass has also been taken into account. It is seen that there is a possibility of nine libration points for small values of oblateness, three collinear, four coplanar and two triangular.  相似文献   

17.
The existence, stability and bifurcation analysis is performed for equilibria of a material point in the gravitational field of three homogeneous penetrable balls fixed in absolute frame. The radii of the balls are assumed finite. In the case when the mass distribution admits a symmetry axis, analytic expressions are written out, allowing one to investigate the properties of equilibrium positions located both on the symmetry axis and outside it. The stability of solutions is studied; domains with different instability degree are described.  相似文献   

18.
The equilibrium configurations of rigidly rotating white dwarfs are calculated numerically as an application of the finite difference — finite expansion method pioneered by Stoeckly. The latest version of the Harrison-Wheeler equation of state is used, together with the post-Newtonian equations of structure. No other approximation is made. The resulting critical values for the angular velocity agree in order of magnitude with a crude approximation to these values by Hartle and Thorne, but fractional differences in mean radius and in mass and eccentricities are very different.On leave from Department of Applied Mathematics, University of Cape Town, Cape Town.  相似文献   

19.
Flattened Jaffe models for galaxies   总被引:1,自引:0,他引:1  
This paper introduces a class of galactic models which extend Jaffe's spherical models to axisymmetric systems, and then studies the properties of their densities and two-integral even distribution functions. The models have finite total mass and finite densities which, at large distances, decay radially like r −4 except on the major axis, and like r −3 on the major axis. The more flattened the galaxy, the stronger is the dependence of the even distribution functions on the angular momenta of its stars. Their distribution functions can be obtained by using the maximum entropy principle or assuming the anisotropy of the models. In particular, some formulae analogous to those of Hunter & Qian are obtained to calculate two-integral odd distribution functions, and they can be applied to obtain the distribution functions under the assumption of anisotropy for the oblate models.  相似文献   

20.
N -body simulations are an important tool in the study of formation of large-scale structures. Much of the progress in understanding the physics of galaxy clustering and comparison with observations would not have been possible without N -body simulations. Given the importance of this tool, it is essential to understand its limitations as ignoring these can easily lead to interesting but unreliable results. In this paper, we study the limitations due to the finite size of the simulation volume. In an earlier work, we proposed a formalism for estimating the effects of a finite box size on physical quantities and applied it to estimate the effect on the amplitude of clustering, mass function. Here, we extend the same analysis and estimate the effect on skewness and kurtosis in the perturbative regime. We also test the analytical predictions from the earlier work as well as those presented in this paper. We find good agreement between the analytical models and simulations for the two-point correlation function and skewness. We also discuss the effect of a finite box size on relative velocity statistics and find the effects for these quantities scale in a manner that retains the dependence on the averaged correlation function     .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号