首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
海底斜坡稳定性受风暴潮、海底地震等有许多不确定因素影响,易发生失稳破坏,产生较大的海洋地质灾害问题.简要介绍了国内外海底斜坡稳定性研究进展;利用GEO-SLOPE滑坡分析软件进行海底边坡稳定性计算,建立研究区斜坡有限元模型、滑移模式,确定模型计算的基础资料如海底地形参数、地层结构参数、土体强度参数等指标,模拟大风浪和地震力作用等极端条件下斜坡稳定性可靠度计算和数值分析,确定海底斜坡失稳空间特征和斜坡失稳概率,对促进今后的海底斜坡稳定性分析方法研究将会起到一定的指导作用.  相似文献   

2.
海底斜坡稳定性受风暴潮、海底地震等诸多不确定因素影响,易发生失稳破坏,产生较大的海洋地质灾害。简要介绍海底斜坡稳定性分析方法,建立曹妃甸深槽典型斜坡计算模型,确定了模型计算的海底地形参数、地层结构参数、土体物理力学参数等指标,利用GEO-SLOPE斜坡分析软件进行海底斜坡稳定性定量计算,分析了工程建设前自然状态下以及在大规模工程建设后海底斜坡稳定性,并模拟分析了在大风浪和地震等极端条件下斜坡的稳定性,确定了海底斜坡失稳空间特征。首次采用数值计算对曹妃甸海底斜坡稳定性进行定量分析评价,可以为类似近海建设工程提供重要的参考作用。  相似文献   

3.
海底斜坡土体失稳的研究进展   总被引:1,自引:0,他引:1  
根据国内外最新的文献,综述了海底斜坡失稳研究核心问题的进展情况。这些进展主要包括海底斜坡土体失稳的定性和定量研究,以及海底斜坡土体失稳后演变趋势的定性和定量研究。  相似文献   

4.
海底滑坡块体运动研究综述   总被引:2,自引:0,他引:2  
海底滑坡是一种极具破坏力的海底地质灾害。其一旦发生,破坏后的块体可以高速运移至数十千米甚至上百千米远,能够对影响区域内的海洋油气生产平台、海底管道、海底电缆等海洋工程设施造成破坏性影响。本研究根据国内外海底滑坡研究领域的最新成果,简要介绍分析与海底斜坡失稳后块体运动有关的调查方法、数值模拟以及物理实验等研究的现状与进展,以期为我国今后海底滑坡地质灾害评价与防治研究提供参考。  相似文献   

5.
海洋资源开发引起海底软黏土的结构性破坏,导致土体强度弱化,在百年一遇的极端波浪作用时极易发生斜坡海床的局部失稳甚至大范围海底滑坡,给海洋工程建设和正常运营带来严重影响。目前,主要采用极限平衡法评价这类海底斜坡,但该法只能给出近似解。基于极限分析上限方法,推导了极端波浪诱发的波压力对斜坡海床的做功功率,建立了外力功与内能耗散率平衡方程;利用最优化方法,结合数值积分和强度折减技术,求解了不同时刻的斜坡海床稳定性系数,并针对扰动后的斜坡海床开展了有限元解的对比验证。在此基础上,深入探讨了不同波浪参数(波长、波高和水深)和坡长小于一个波长等极端条件下的海底斜坡稳定性。  相似文献   

6.
波浪作用下海底斜坡滑动稳定性分析中,一般未考虑海底坡度引起的波浪浅水效应,即不考虑波浪在斜坡面上的变形导致的波压力变化,降低了其计算结果的可靠性。本文基于沿斜坡面传播的线性波浪理论,考虑波浪的浅水效应,利用波浪与重力作用下海底斜坡的有效应力场,计算海底斜坡滑动稳定性安全系数。在验证海底斜坡滑动稳定性计算结果可靠性的基础上,分析了坡度对海底斜坡瞬态波浪响应及其滑动失稳特征的影响。结果表明,由于波浪沿斜坡面传播的浅水效应,相对于水平海床,波浪作用下斜坡最大瞬态应力和孔隙水压力随着坡度的增加基本呈线性增加趋势,最大水平位移呈非线性增加趋势;相比于坡底水平段海床的滑动区,斜坡面上滑动区的深度和水平方向滑动范围均有所增加,且坡度越大,这种效应越显著;相比于饱和海床,非饱和条件下,坡度对斜坡体滑动特征的影响程度有所降低。  相似文献   

7.
海洋灾害地质因素中,虽然海底滑坡发生频率不高、但造成的灾害损失往往会较严重,斜坡的稳定性受众多因素综合影响,且各因素对斜坡稳定性的影响程度存在差异,其敏感性分析一直是国内外研究的重要内容。本文以曹妃甸深槽海底斜坡为研究对象,分析了水下斜坡稳定性的影响因素。应用滑坡稳定性分析软件Geo-Slope对黏聚力、内摩擦角、重度、坡度等内在敏感因素以及地震动参数、附加荷载和波高这3个外在敏感因素进行了单因素敏感性分析,认为内在因素中内摩擦角最为敏感,外在因素中地震动参数的敏感度最高。通过对水下斜坡稳定性影响因素及其敏感性分析,可为海底滑坡的防治规划提供依据。  相似文献   

8.
天然气水合物是一种赋存在海底沉积物孔隙中的清洁能源,含量巨大,具有很好的开发前景和研究价值。垂直井作为开采水合物的一种主要方式,在开采过程中,会改变天然气水合物沉积层的环境条件,随着开采井释放出大量的气体和水,在地层中形成超压,过高的孔隙压力会降低沉积物的胶结强度,破坏沉积层的稳定性,诱发海底滑坡。借助Flac3D软件建立高精度的海底斜坡模型,基于有限差分法对垂直多井动态开采水合物过程中的边坡稳定性进行了数值模拟,模拟了不同开采方案条件下采用多井开采,水合物分解量、开采井压变化等不同影响因素产生的地层力学响应和位移变化,基于安全系数法进对于水合物开采引起的边坡稳定性进行了初步分析。结果表明:多井开采条件下,随着水合物分解程度的不断增大,海底斜坡稳定性逐渐降低,当水合物分解程度达到80%时,安全系数会降低到1.0以下,边坡会失稳;随着井压的不断降低,海底斜坡稳定性同样逐渐降低,当开采井压降低到4 Mpa以下时,安全系数会降低到1.05以下,边坡变为欠稳定状态,存在发生海底滑坡的风险。  相似文献   

9.
基于极限分析上限方法的海底斜坡稳定性评价   总被引:1,自引:1,他引:1  
刘博  年廷凯  刘敏  郑德凤  宋雷  印萍 《海洋学报》2016,38(7):135-143
极限平衡法仍是当前海底斜坡稳定性的主要工程评价方法,但该法只能给出稳定性分析的近似解答。基于极限分析运动学定理,假定海底斜坡发生对数螺线型滑移破坏模式,将滑体有效自重和简化波浪力等以外荷载形式叠加引入到虚功率方程中,与潜在滑动面上由黏聚力产生的内能耗散率相平衡,建立考虑一阶简化波浪效应的海底斜坡上限解法;利用多变量无导数求极值的逐级迭代方法与最优化技术,结合抗剪强度折减思想,求解波浪加载下不同时刻的海底斜坡稳定性与相应的临界破坏机构,并针对典型算例开展有限元数值解的验证。进而联合采用数值法与上限解,探讨波高、波长、水深等波浪参数对海底斜坡稳定性与滑动机制的影响。结果表明,本文提出的上限解与数值解吻合较好,获得的安全系数与破坏模式等符合一般规律,为波浪作用下海底斜坡的稳定性评价提供了新的途径。  相似文献   

10.
在过去二十年间,各个研究机构、学术界以及相关行业共同努力,在海洋岩土力学领域以及海底滑坡研究方面都取得了重大进展。由于海底滑坡对海上平台、海上建筑物以及海岸社区造成了实质性的威胁,因此这方面的研究工作还会进一步加强。好在有石油工业的勘探调查,他们在挪威的大陆边缘、几内亚湾以及墨西哥湾开展了海底陆坡失稳及其对海上平台、油气管道和海上设施所造成的影响方面的研究计划。这些研究结果表明海底斜坡失稳通常是复杂的,是多种原因和触发因素共同作用的结果。  相似文献   

11.
ABSTRACT

The purpose of this paper is to analyze the stability of submarine slope during the natural gas hydrate dissociation. A model is deduced to calculate the excess pore fluid pressure. In addition, a new method is proposed to define and calculate the factor of safety (FoS) of the submarine slope. Case study is also performed, results of which show that dissociation of hydrates would decrease the stability of submarine slope. If the cohesion of the hydrate-bearing sediments is small, the submarine slope would become unstable because of the shear failure. If the cohesion of the hydrate-bearing sediments is large enough, the tensile failure would happen in the hydrate-bearing sediments and the excess pore pressure may explode the submarine slope. Under the drained condition, the submarine slope may remain stable because the buildup of excess pore fluid pressure could not take place. Moreover, FoS would be underestimated by the assumption that natural gas hydrates dissociate in the horizontally confined space, but would be overestimated by only taking into account of the base of the natural gas hydrate-bearing sediments. The compressibility factor of natural gas should also be considered because treating natural gas as ideal gas would underestimate the stability of submarine slope.  相似文献   

12.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   

13.
The Tianjin Port is the largest man-made port in China.Since the navigation channel of the Tianjin Port is constructed by dredging,a very important problem,as many people concerned,is the submarine slope stability.As the environment on land is different from that in submarine,it is necessary to evaluate the influence of the environmental loading,such as wave and tide,on the stability of navigation channel slope.In the present study,based on the observed results,the characteristics of the navigation channel slope are summarized,and the causes of creating the special slope shape are analyzed.The roles of waves and tides are evaluated,and failure mechanics are discussed to helq us predict what will happen in the future.  相似文献   

14.
Sediment source and transport trends are influenced by various hydrodynamic factors, and thus play important roles in sedimentary evolution and coastal stability. To examine sediment transport trends around the abandoned Yellow River delta promontory and its erosion mechanism, we employ empirical orthogonal function (EOF) analysis to study sedimentary characteristics and transport trends of the abandoned Yellow River delta in northern Jiangsu Province, China. The results showed that: (1) the main sediment source in the abandoned Yellow River delta is the submarine coastal slope and both sides of the abandoned Yellow River Delta; (2) the main hydrodynamics controlling sediment transport is the current that runs along the shore, coupled with waves, especially southward currents; (3) the sediment of the study area was redistributed under hydrodynamics; coarse sediments were eroded and broadly transported to the south. Therefore, it is concluded that the sediment sources and transport have important influence on coastal evolution: the sediment source area shows mass loss of deposits and erosion; deposits in the submarine coastal slope provide the source and were continuously eroded to provide materials to other places as a sediment source.  相似文献   

15.
在测深、钻探、室内测试、水文泥沙测验等勘测资料基础上,详细分析宁波穿山水道海域水文气象、工程地质、地震活动性、浅层气、滑坡、沙土液化、岸坡和冲刷槽冲淤动态等因素,这些分析结果表明穿山水道海底稳定,海岸和海洋工程环境适宜.  相似文献   

16.
The exploration and exploitation of marine georesources ordinarily disturbs the submarine soft clay surrounding construction areas and leads to a significant decrease in the shear strength of structured and sensitive clayey soils in submarine slopes. Under wave action, local slides can even trigger large-scale submarine landslides, which pose a serious threat to offshore infrastructure such as pipelines and footings. Therefore, accurately evaluating the stability of submarine sensitive clay slopes under wave-induced pressure is one of the core issues of marine geotechnical engineering. In this paper, a kinematic approach of limit analysis combined with strength reduction technique is presented to accurately evaluate the real-time stability of submarine sensitive clay slopes based on the log-spiral failure mechanism, where external work rates produced by wave-induced pressure on slopes are obtained by the numerical integration technique and then are applied to the work-energy balance equations. The mathematical optimization method is employed to achieve the safety factors and the critical sliding surfaces of submarine slopes at different time in a wave cycle. On this basis, the stability of submarine sensitive clay slopes under various wave parameters is systematically investigated. In particular, extreme wave conditions and special cases of slope lengths no more than one wavelength are also discussed. The results indicate that waves have some negative effects on the stability of submarine sensitive clay slopes.  相似文献   

17.
Abstract

As part of a National Oceanic and Atmospheric Administration (NOAA) program to understand bottom and nearbottom processes on the continental margin, the continental slope seaward of the coast of Delaware, just east of the Baltimore Canyon Trough, and northeast of Wilmington Canyon was studied in detail. With a suite of geophysical data, a 7.5 × 13.0‐km portion of the continental slope was surveyed and found to be composed of a large submarine slide, approximately 11 km 3 in volume. The slide varies from 50 to 300 m in thickness and is believed to be composed of Pleistocene Age sediments. The internal structure of the continental slope can be seen on the seismic reflection profiles, as well as the readily identifiable continuous slip surface. Pliocene to Cretaceous horizons comprise the continental margin with Pliocene to Eocene horizons truncated at the slip surface. Sediment failure occurred on the slope between the late Tertriary erosion surface, which shaped the continental margin, and the overlying Quaternary sediments. A mechanism suggested to have contributed to the sediment failure is a late Pleistocene lower stand of sea level. Creep of surficial sediments is believed to be active on the surface of the submarine slide, indicating present‐day instability.  相似文献   

18.
Abstract

The use of marine high‐resolution geophysical profiling data, seafloor soil samples, and accepted land‐based methods of analysis have provided a means of assessing the regional geotechnical conditions and relative slope stability of the portion of the Gulf of Alaska Continental Margin known as the Kodiak Shelf. Eight distinct types of soils were recognized in the study; the seafloor distribution of these indicates a complex geotechnical setting. Each soil unit was interpreted as having a distinct suite of geotechnical properties and potential foundation engineering problems. Seven categories of relative slope stability were defined and mapped. These categories range from “highest stability”; to “lowest stability,”; and are based on the degree of slope of the seafloor, type of soil underlying the slope, and evidence of mass movement. The results of the analysis indicate that the highest potential for soil failure exists on (1) the slopes forming boundaries between the submarine banks and the broad sea valleys, and (2) the upper portion of the continental slope, where evidence of past slope failure is common. Also of concern are gently sloping areas near the edges of submarine banks where evidence of possible tension cracks and slow downhill creep was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号