首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract: The landscape in the vicinity of Scott Base is one of the most singular of landscapes in the already unique environment of the Ross Sea Region of Antarctica. A rich history of human endeavour together with a broad range of physical features such as volcanoes, various glacial landforms, polar beaches and the Dry Valleys with their own glaciers, sand dunes and patterned ground must make it one of the most fascinating areas on earth. This paper highlights some of the more notable of these landscape features.  相似文献   

2.
Interpretation of sediments in the floors of valleys opening into western McMurdo Sound has been so problematic that it has hindered understanding of the late Quaternary history of the Antarctic Ice Sheet. Lateral moraines and enclosed drift sheets so clearly exposed on the headlands are generally absent within the valleys themselves. Instead, valley-floor sediments and landforms consist of hummocky, stratified fine sediment generally capped by coarser, poorly sorted material, small cross-valley and longitudinal ridges, and lateral ridges that superficially resemble shorelines. One clue as to the origin of these deposits is that at least some of the valleys were occupied by large proglacial lakes during the last glacial maximum (e.g. Glacial Lakes Trowbridge and Washburn in Miers and Taylor Valleys, respectively). This paper describes a new mechanism observed in a modern perennially ice-covered proglacial lake that documents the movement of glacial debris beyond the grounding line across the surface of the lake. This mechanism accounts for the absence of moraines and other ice-contact features on the valley floors, as well as for the presence of the other deposits and landforms mentioned above.  相似文献   

3.
Paleolimnology of the McMurdo Dry Valleys,Antarctica   总被引:1,自引:0,他引:1  
The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8–6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperature latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an old carbon reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological paleo-indicators found in the sediments include cyanobacterial filament sheaths, diatom frustules and other eukaryotic algal cells, protozoan cysts, photosynthetic pigments, and minerals (e.g. carbonates) associated with microbial activity. Future work will benefit from fully characterizing the connection between the ice covers, environmental conditions, and paleo-indicators, thereby allowing refinement of inferences made concerning the paleoenvironment. New dating techniques need to be tested in this environment to overcome the problems associated with radiocarbon dating. The establishment of a detailed and focused paleolimnological campaign is proposed.  相似文献   

4.
Late Quaternary Lakes in the McMurdo Sound Region of Antarctica   总被引:2,自引:0,他引:2  
Lake levels within the enclosed drainage basins of the Dry Valleys adjacent to McMurdo Sound have fluctuated widely during the Late Quaternary due to (a) local climate change and the consequent variation in the evaporation–precipitation regime, and (b) glacial fluctuations, resulting in changes in the catchment and meltwater drainage areas of the glaciers and, in some cases, in the volumes of the available lake basins. Three types of lakes can be distinguished on the basis of their water source: (1) lakes receiving the bulk of their water from melting of local alpine glaciers; (2) proglacial lakes associated with outlet glaciers from the East Antarctic Ice Sheet; (3) proglacial lakes associated with the marine oxygen-isotope stage 2 Ross Sea ice sheet and its precursors. The Dry Valleys contain an exceptionally long lacustrine record, extending back at least 300,000 years. Lacustrinesedimentation is cyclical, occurring over periods of about 100,000 years. During the last such cycle, relatively small lakes, both adjacent to East Antarctic outlet glaciers and fed by meltwater from alpine glaciers, existed during stage 5. However, these local lakes gave way to large proglacial lakes adjacent to the Ross Sea ice sheet in stage 2. The same relationship apparently occurred during the previous 100,000-year cycle. Dating of lacustrine sediments suggests that lakes proglacial to the Ross Sea ice sheet have existed during episodes of sea-level lowering during global glaciations. Lakes proglacial to outlet glaciers from the East Antarctic Ice Sheet have formed coincident with episodes of high eustatic sea level during interglacial periods.  相似文献   

5.
Jake E. Haugland   《Geomorphology》2004,61(3-4):287-301
Chronosequences of 250 to 130 years were established on two late Holocene glacier forelands in the Jotunheimen region of southern Norway. Patterned features occurring within chronologically established time units were studied. Young patterned features, forming 10–20 years after deglaciation, are frost active. Vegetation cover is minimal within the young patterned features, consisting of bryophytes/organic crusts. Soil development within patterned ground is also minimal/absent because frost action retards horizonization. With time and distance from the glaciated ice margin, frost activity declines within the patterned features, suggesting that a thin, active “periglacial zone” exists near the ice margin. Initially, frost activity decreases at the borders of the features with the centers stabilizing later in time. This results in fine-scale soil heterogeneity and variations of soil development. Fine-scale pedogenic development is first encountered at the borders of patterned ground that has developed on terrain exposed since the 1930s, yet soil development is predominantly absent at the centers of patterned ground. With time and distance from the ice margin, frost activity declines and allows patterned features to homogenize from border to center positions in regard to soil characteristics. Across the chronosequences, soils within patterned features pedogenically follow previous soil chronosequence studies, evolving from USDA classifications of Entisols into Inceptisols. Frost disturbance within patterned ground, however, produces a lag effect, that results in longer periods of time for pedogenesis to occur and thinner soils than that of the surrounding terrain.  相似文献   

6.
This paper provides data on the landforms, soils, and sediments within a unique northern Michigan landscape known as the Grayling Fingers, and evaluates these data to develop various scenarios for the geomorphic development of this region. Composed of several large, flat-topped ridges that trend N–S, the physiography of the “Fingers” resembles a hand. Previously interpreted as “remnant moraines”, the Grayling Fingers are actually a Pleistocene constructional landscape that was later deeply incised by glacial meltwater. The sediments that comprise the Fingers form a generally planar assemblage, with thick (>100 m), sandy glacial outwash forming the lowest unit. Above the outwash are several meters of till that is remarkably similar in texture to the outwash below; thus, the region is best described as an incised ground moraine. Finally, a thin silty “cap” is preserved on the flattest, most stable uplands. This sediment package and the physiography of the Fingers are suggestive of geomorphic processes not previously envisioned for Michigan.Although precise dates are lacking, we nonetheless present possible sequences of geomorphic/sedimentologic processes for the Fingers. This area was probably a topographic high prior to the advance of marine isotope stage 2 (Woodfordian) ice. Much of the glacial outwash in the Fingers is probably associated with a stagnant, early Woodfordian ice margin, implying that this interlobate area remained ice-free and ice-marginal for long periods during stage 2. Woodfordian ice eventually covered the region and deposited 5–10 m of sandy basal till over the proglacial outwash plain. Small stream valleys on the outwash surface were palimpsested onto the till surface as the ice retreated, as kettle chains and as dry, upland valleys. The larger of these valleys were so deeply incised by meltwater that they formed the large, through-flowing Finger valleys. The silt cap that occupies stable uplands was probably imported into the region, while still glaciated. The Fingers region, a col on the ice surface, could have acted as a collection basin for silts brought in as loess or in superglacial meltwater. This sediment was let down as the ice melted and preserved only on certain geomorphically stable and fluvially isolated locations. This study demonstrates that the impact of Woodfordian ice in this region was mostly erosional, and suggests that Mississippi Valley loess may have indirectly impacted this region.  相似文献   

7.
The Role of Polar Lake Ice as a Filter for Glacial Lacustrine Sediments   总被引:1,自引:0,他引:1  
Energy balance calculations show that clasts of less than critical thickness will melt their way through the permanent floating ice cover of lakes in arid regions where the mean annual temperature rarely exceeds the freezing point. Clasts of greater thickness will remain supported by the ice. In the Dry Valleys region of the Transantarctic Mountains clasts with thickness of up to about 1 cm pass through the floating ice cover of modern lakes leaving larger clasts supported.  相似文献   

8.
Arctic tundra surfaces are dominated by a variety of patterned ground forms. Whereas a large number of studies have described morphology, structure and processes of patterned ground, few have monitored detailed patterned ground dynamics and subsurface environments continuously. We applied electrical resistivity tomography (ERT) to understand near‐surface conditions of two types of patterned ground, ice‐wedge polygons and mudboils in Svalbard, where periglacial processes associated with permafrost are intensively monitored. Automated monitoring shows surface movement characterized by annual cycles of frost heave and thaw settlement, the amounts and rates of which are influenced by the intensity of ice segregation. A time series of ERT shows (1) a distinct resistivity boundary delimiting the active‐layer depth, (2) seasonal variation in resistivity controlled by thermo‐hydrological dynamics and (3) spatial variation in resistivity reflecting desiccation in summer and intensive ice segregation in winter. These results demonstrate ERT as a useful complementary technique for monitoring active‐layer depths and near‐surface hydrological conditions at periglacial patterned ground sites, where automated soil thermal and moisture measurements are limited.  相似文献   

9.
ABSTRACT. Alpine glacier deposits in the McMurdo Dry Valleys of Antarctica have been interpreted to indicate that early Pliocene climate in that region was not warmer than it is today. Correlation of these alpine‐glacier till sheets to marine deposits that contain evidence consistent with warmer‐than‐present climate has been used to constrain the age of both deposits, preclude the warm interpretation of the marine evidence, and constrain mountain uplift as determined from the marine deposit. We tested the interpretation that, in the early Pliocene, the alpine glaciers in Wright Valley terminated in a fjord and, thereby, constrain the age, temperature, and depth of the fjord. We did this by mapping the surficial geology in this region using the newly available microtopography based on the light detection and ranging (LIDAR) technique. Stratigraphic issues like these need to be resolved in order to quantify early Pliocene climate in Antarctica and contribute to understanding warm global‐climate dynamics. We found that the Pliocene Alpine‐IIIA (A‐IIIA), A‐IIIB and A‐IV drift sheets were more likely deposited from terrestrial alpine‐glacier lobes than glaciers terminating either at tidewater or with a floating appendage. The principal evidence is the occurrence of moraine fragments well below the minimum elevation of the early Pliocene fjord surface, and moraine arrangement in arcs indicative of arcuate glacier fronts without flairing near the proposed shoreline. Our A‐IIIA till is more widespread in the proglacial areas of the five alpine glaciers examined than previously proposed. We propose that the existing distribution of A‐IIIB till reflects glaciers even less extensive than today rather than truncation at a hypothetical fjord surface. Additionally, the A‐IV moraine remnants outline glaciers that were significantly larger than those associated with A‐III moraines. If we are correct, the age of the A‐III till, 3.4 ± 0.1 Ma at maximum, does not constrain the age of the Prospect fjord episode which can be closer to 5.5 ± 0.4 Ma as previously inferred. Moreover, if the alpine tills are not as old as the Prospect fjord episode, the polar paleoclimatic interpretation from those tills does not preclude the high temperature (0–3°C) and reduced salinity previously inferred for the Prospect fjord. However, if alpine glacier extent was not limited by Prospect fjord surface elevation, then paleoclimate during the A‐IIIA, A‐IIIB, and A‐IV glacial episodes can be quantitatively reconstructed. The Prospect fjord might have been deep, not shallow, and, hence, mountain uplift might be greater than currently thought which would explain minimal alpine‐glacier erosion into the valley sides.  相似文献   

10.
Outcrops and cores of the Sirius Group sediments were studied at Table Mountain, Dry Valleys area, Antarctica. These sediments form a surficial veneer at least 9.5 m thick. Three facies — a gravelly sandstone, a sandstone, and a sandy conglomerate — are mapped and described from 13 outcrops and three cores. The gravelly sandstone, constituting 13%of all cored material, is bimodal with matrix-supported clasts comprising 5–33%of the facies. Fabric analysis indicates that it was deposited primarily by lodgment from glacial ice but with minor elements of meltout and flow. The sandstone facies, constituting 77%of all cored material, is a well-sorted, fine- to medium-grained sand, which commonly has laminated bedding. It is predominantly a glaciofluvial deposit but has some glaciolacustrine elements. The sandy conglomerate, constituting 10%of all cored material, is a minor facies. It is massive and clast-supported. It was deposited in a high-energy environment suggestive of subglacial meltwater channels.
Sirius Group sediments at Table Mountain are the result of wet-based ice advancing and retreating over waterlain deposits. This is consistent with an advancing ice mass in climatic conditions that were warmer than present. The majority of the sediments were deposited by alpine ice following a similar pathway to the present-day Ferrar Glacier and as such the depositional environment is one that concurs with evidence of a stable East Antarctic Ice Sheet approach. At Table Mountain, the predominantly glaciofluvial and glaciolacustrine facies is inferred to represent a more distal part of the Sirius Group environment than that seen at other outcrops in the Dry Valleys.  相似文献   

11.
云南千湖山第四纪冰川发育特点与环境变化   总被引:2,自引:0,他引:2  
千湖山(4249 m) 是横断山脉中段保存确切第四纪冰川遗迹的山地,受西南季风影响强烈。对于研究青藏高原边缘山地冰川发育与气候和构造之间的耦合关系具有十分重要的科学意义。在千湖山海拔3500 m以上保存着古冰川侵蚀与堆积地貌,冰川发育依托海拔4000~4200 m的夷平面及其支谷地形。冰川形态类型为小型的冰帽以及由冰帽边缘溢流进入山谷的山谷冰川。应用相对地貌法,光释光(OSL) 年代测试,本文确定千湖山地区的冰进系列:末次冰盛期(LGM,22.2±1.9 ka BP)、末次冰期中期(MIS3b,37.3±3.7 ka BP、45.6±4.3 ka BP45.6±4.3 ka BP)、末次冰期早期(MIS4)。千湖山冰川前进规模是MIS3b 阶段大于末次冰盛期,主要原因是末次冰期中期(MIS3b) 时本区气候相对湿润,而在末次冰盛期(MIS2) 时气候条件比较干燥。在总体相似的气候背景下,与横断山其它存在多期次冰川作用的山地相比,千湖山只发育末次冰期的冰川作用,其差异性说明该地区冰川发育主要受山体构造抬升控制。  相似文献   

12.
Cryptoendolithic microbial communities in the Ross Desert (McMurdo Dry Valleys) are characterized on the basis of photosynthetic microorganisms and fungi. Two eukaryotic communities (the lichen-dominated and Hemichloris communities) and three cyanobacterial communities (the red Gloeocapsa, Hormathonema-Gloeocapsa, and Chroococcidiopsis communities) are described. Eleven coccoid, one pleurocapsoid, and five filamentous cyanobacteria occurring in these communities are characterized and illustrated. The moisture grade of the rock substrate seems to affect pH, formation of primary iron stain, and the distribution of microbial communities.  相似文献   

13.
The extent of Late Quaternary glaciation in the northwest Nelson region of New Zealand has traditionally been regarded as minor, with small‐scale valley glaciation in confined upland reaches. New geomorphological evidence, including moraines, kame terraces, till‐mantled bedrock and outwash terraces, indicate that greatly expanded valley glaciers flowed into the lowland valley system at the mouths of the Cobb‐Takaka and Anatoki drainages. The timing for this ice advance into lowland valleys is constrained by lowland landform characteristics and a single cosmogenic exposure age, suggesting Late and Middle Pleistocene ice expansion, respectively. Evidence for expanded upland ice on the Mount Arthur Tableland and adjacent areas includes trimlines, boulder trains and roche moutonées. Two cosmogenic exposure ages on upland bedrock surfaces suggest that major ice expansion occurred during MIS 3 and/or 4, while previously published exposure dating from Cobb Valley suggests large MIS 2 ice expansion as well. The inferred, markedly expanded ice left little or no clear geomorphic imprint on the Cobb–Takaka Gorge, and required temperature depression of 4–6°C with near‐modern precipitation levels.  相似文献   

14.
This paper discusses direct current resistivity soundings and geomorphological studies of Quaternary deposits in two glacial troughs in the Abisko Mountains of northern Sweden. The subject of the fieldwork is the depth of Pleistocene glacial erosion. Studies were carried out in 1998 and 2003 in the Kärkevagge and Vassivagge. The estimated thickness of Quaternary deposits and bedrock properties are discussed in the broader context of glacial erosion studies in the Abisko area. Geophysical and geomorphological studies suggest that the depth of glacial erosion was highly differentiated from –190 m in the Torneträsk basin to the metric overall erosion on the upland plateau. In medium‐sized valleys several kilometres long, erosion depth measures 30–50 m. Present‐day stream channel patterns reveal a strong relation to the bedrock configuration in valley floors  相似文献   

15.
More than 250 radiocarbon dates of lacustrine algae and marine shells afford a chronology for Ross Sea drift in eastern Taylor Valley. Dates of algae that lived in ice-dammed Glacial Lake Washburn show that grounded Ross Sea ice blocked the mouth of Taylor Valley between 8340 and 23,800 14C yr bp . Ross Sea ice was at its maximum position at the Hjorth Hill moraine between 12,700 and 14,600 14C yr bp and was within 500m distance of this position as late as 10,794 14C yr bp . The implication is that the flow line of the Ross Sea ice sheet which extended around northern Ross Island and across McMurdo Sound to Taylor Valley must have remained intact, and hence that a grounded ice sheet must have existed east of Ross Island as late as 8340 14C yr bp . Evidence from ice-dammed lakes in Taylor Valley and from shells from McMurdo Sound suggests grounding-line retreat from the vicinity of Ross Island between 6500 and 8340 14C yr bp . If this is correct, then most recession to the present-day grounding line on the Siple Coast took place subsequently in the absence of significant deglacial sea-level rise. Rising sea level may have triggered internal mechanisms within the ice sheet that led to retreat, but did not in itself drive continued ice-sheet recession. Ice retreat, once set in motion, continued in the absence of sea-level forcing. If correct, this hypothesis implies that the grounding line could continue to recede into the interior reservoir of the West Antarctic Ice Sheet.  相似文献   

16.
Basal shear stress and sediment strength associated with the development of glacial flutes exposed during the 20th century in the Saskatchewan Glacier Valley Alberta, Canada, were determined by comparing reconstructed ice thicknesses, basal shear stresses, and field properties of sediments with the morphologically similar Kiwa Glacier Valley, British Columbia, Canada, where flutes are absent. Reconstructed subglacial conditions in these two valleys were compared to understand why flutes were developed in the former and not the latter. Using an existing topographic map of each glacier, equations for a series of longitudinal profile lines were determined to represent the existing ice surface. A previous ice surface, identified by trimlines along the valley walls, was reconstructed by applying the equations of longitudinal profile lines from the existing ice surface to a previous terminus between 5 and 10 km downvalley. After subtracting the elevation of the land surface (determined from topographic maps) from the reconstructed glacier surface, and calculating former ice surface slope, ice thickness and basal shear stress distributions were determined. Sediment texture and the location of flutes on a morainal topographic high, downglacier from a proglacial lake basin, allowed high porewater pressures to develop as glaciers extended to terminus positions in the Saskatchewan Glacier Valley. Sediment strength was reduced sufficiently below values of reconstructed shear stress plots to allow deformation creating flutes. The absence of a similar topographic high and different sediment textural characteristics in the Kiwa Glacier Valley resulted in lower porewater pressures and consequently less reduction in sediment strength preventing the development of glacial flutes despite higher shear stress values here. Results indicate that the degree to which sediment characteristics and porewater pressure allow reduction of subglacial sediment strength relative to basal shear stress is important in determining conditions when flutes may develop.  相似文献   

17.
We explore the relationships amongst bedding dip, basin aspect, and glacial landforms using field observations and GIS analyses of the northwestern Uinta Mountains of Utah. We examine basins on opposing sides of three ice divides in which quartzite beds of the Mount Watson Formation maintain a near constant dip. These areas provide contrasting relationships between ice flow and bedding dip directions while holding rock type and climate constant. We map the occurrence of three glacial erosional landforms: cliffs showing evidence of quarrying, scoured surfaces polished by abrasion, and overdeepenings. Cliffs and overdeepenings are more common in basins where bedding dips up‐basin, while scoured surfaces are more prevalent where bedding dips down‐basin. The significance of jointing in controlling glacial erosional forms is well established and we propose that bedding, as well as joints, dictates the geometry of quarried blocks and influences the spatial patterns of process dominance. Where bedding dips up‐basin, the geometry of pre‐existing weaknesses favours quarrying creating both cliffs and overdeepenings. In contrast, where bedding dips down‐basin, block geometry does not favour the creation of overdeepenings via quarrying and exposed bedding planes are subjected to glacial abrasion, producing scoured surfaces.  相似文献   

18.
The White Mountains, astride the California-Nevada stateline, are the highest and westernmost of the Great Basin ranges. This range was extensively glaciated during the Quaternary Period. Glacial landforms and scattered erratics were identified in the field using primarily morpho-and lithostratigraphic criteria, and mapped on aerial photographs and topographic maps. Topographic characteristics of the glacial deposits were analyzed using standard statistical procedures. A sequence of glacial deposits was identified in terms of six glacial stages, these glaciations named according to type site, and relative ages inferred. With the exception of perched Stage I (early) deposits along the range crest, reconstructed equilibrium-line altitudes and elevation of the glacier termini increase to the present, with glacier length and inferred size decreasing through time. Preliminary data suggest that weathering and pedogenesis are also progressive, though environmental gradients mask some of these distinctions between deposits. It is hypothesized that the White Mountains have a similar glacial chronology to the adjacent Sierra Nevada, but that with the intensification of the Sierran rainshadow during the Quaternary, the extent of glaciation in the White Mountains apparently decreased through time owing to regional tectonic uplift. This had led to the preservation of a more complete sequence of glacial deposits than in the Sierra Nevada, making the delineation of multiple mid-Quaternary events possible in many valleys. Further radiometric and chronometric dating of these deposits is in progress. [Key words: Glaciation, Quaternary, glacial geomorphology, White Mountains, California, Nevada.  相似文献   

19.
This paper reviews permafrost in High Arctic Svalbard, including past and current research, climatic background, how permafrost is affected by climatic change, typical permafrost landforms and how changes in Svalbard permafrost may impact natural and human systems. Information on active layer dynamics, permafrost and ground ice characteristics and selected periglacial features is summarized from the recent literature and from unpublished data by the authors. Permafrost thickness ranges from less than 100 m near the coasts to more than 500 m in the highlands. Ground ice is present as rock glaciers, as ice-cored moraines, buried glacial ice, and in pingos and ice wedges in major valleys. Engineering problems of thaw-settlement and frost-heave are described, and the implications for road design and construction in Svalbard permafrost areas are discussed.  相似文献   

20.
Griffith Taylor was the first geomorphologist to work in the Dry Valleys of southern Victoria Land, Antarctica. Following his field work in February 1911, he proposed a multistage model in which earlier cirque erosion was later swamped by expanding outlet glaciers. Subsequently these glaciers retreated leaving the present form of the valleys. The topography retained the imprint of each episode, hence his name ‘palimpsest theory’. I summarise later research and compare Taylor's theory with current views.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号