首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical technique of time-longitude analysis has been developed by studying the fine structure of temporal variations in total solar irradiance (TSI). This analysis produces maps of large-scale thermal inhomogeneities on the Sun and reveals corresponding patterns of radiative excess and deficit relative to the unperturbed solar photosphere. These patterns are organized in two-and four-sector structures and exhibit the effects of both activity complexes and the active longitudes. Large-scale patterns with radiative excess show a facular macrostructure caused by the relaxation of large-scale thermo-magnetic perturbations and/or energy output due to very large-scale solar convection. These thermal patterns are related to long-lived magnetic fields that are characterized by rigid rotation. The patterns with radiative excess tend to concentrate around the active longitudes and are centered at 103° and 277° in the Carrington system when averaged over the time-longitude distribution of thermal inhomogeneities during activity cycles 21–23.  相似文献   

2.
The effect of large-scale magnetic fields on total solar irradiance (TSI) was studied both in time–frequency and in time–longitude aspects. A continuous wavelet analysis revealed that the energy of thermomagnetic disturbances due to sunspots and faculae cascades into the magnetic network and facular macrostructure. A numerical technique of time–longitude analysis was developed to study the fine structure of temporal changes in the TSI caused by longitudinal brightness inhomogeneities and rotation of the Sun. The analysis facilitates mapping large-scale thermal inhomogeneities of the Sun and reveals patterns of radiative excesses and deficits relative to the undisturbed solar photosphere. These patterns are organized into 2- and 4-sector structures that exhibit the effects of both activity complexes and magnetically active longitudes. Large-scale patterns with radiative excess display a facular macrostructure and bright patterns in the magnetic network caused by the dissipation of large-scale thermomagnetic disturbances. Similar global-scale temperature patterns were found in the upper solar atmosphere. These temperature patterns are also causally related to long-lived magnetic fields of the Sun. During activity cycles 21–23 the patterns with radiative excess tend to be concentrated around the active longitudes which are centered at about 60° and 230° in the Carrington system.  相似文献   

3.
K. Mursula  T. Hiltula 《Solar physics》2004,224(1-2):133-143
Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2 tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.  相似文献   

4.
Today the Sun has a regular magnetic cycle driven by a dynamo action. But how did this regular cycle develop? How do basic parameters such as rotation rate, age, and differential rotation affect the generation of magnetic fields? Zeeman Doppler imaging (ZDI) is a technique that uses high‐resolution observations in circularly polarised light to map the surface magnetic topology on stars. Utilising the spectropolarimetric capabilities of future large solar telescopes it will be possible to study the evolution and morphology of the magnetic fields on a range of Sun‐like stars from solar twins through to rapidly‐rotating active young Suns and thus study the solar magnetic dynamo through time. In this article I discuss recent results from ZDI of Sun‐like stars and how we can use night‐time observations from future solar telescopes to solve unanswered questions about the origin and evolution of the Sun's magnetic dynamo (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We investigate the rotation profile of solar-like stars with magnetic fields. A diffu-sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 σ level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 M⊙, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.  相似文献   

6.
In this paper the process of magnetic convection is studied. It is shown that outside of a radius of about 2 × 105 km, magnetic fields in the Sun may be buoyant. Outside this limit strong field regions tend to rise at the expense of weak field regions which tend to sink. Magnetic convection may be important in magnetic stars and even in the solar interior. A recent calculation of the angular velocity of the Sun provides a period of rotation for the solar core of from 0.5 to 5 days. This calculation requires that the magnetic field extract angular momentum from the solar interior. Magnetic convection thus seems to be required, if this calculation is correct. Furthermore, magnetic convection may transfer heat and thereby possibly change the internal temperature structure of the Sun from what would be expected solely by radiation transfer.  相似文献   

7.
The magnetic field pattern associated with large scale convective motions, which are much larger than the supergranules and have been conceived as a source of maintenance of the solar differential rotation, is calculated in the framework of a slowly and differentially rotating thin spherical shell, including the effects of thermal conductivity and viscosity. The approximations of Boussinesq are used and the initial state of the magnetic field is assumed to be purely toroidal.The resulting magnetic field pattern rotates rigidly on the differentially rotating Sun with some phase delay to the convective pattern, if it is assumed that only the predominant mode with the maximum growth rate is actually realized in the solar convection zone. The obtained magnetic and convective patterns and their properties seem to explain naturally the various aspects of large scale ordering of solar activity such as the existence and behavior of complexes of activity, the rigid body rotation of proton flare active longitudes, their association with UMR's, the existence of ghost and mirror image of UMR's themselves and the fact that the rotational period derived from sunspot data is shorter than that derived spectroscopically from fluid velocity.  相似文献   

8.
After decades of effort, the solar activity cycle is exceptionally well characterized, but it remains poorly understood. Pioneering work at the Mount Wilson Observatory demonstrated that other Sun-like stars also show regular activity cycles, and suggested two possible relationships between the rotation rate and the length of the cycle. Neither of these relationships correctly describes the properties of the Sun, a peculiarity that demands explanation. Recent discoveries have started to shed light on this issue, suggesting that the Sun’s rotation rate and magnetic field are currently in a transitional phase that occurs in all middle-aged stars. Motivated by these developments, we identify the manifestation of this magnetic transition in the best available data on stellar cycles. We propose a reinterpretation of previously published observations to suggest that the solar cycle may be growing longer on stellar evolutionary timescales, and that the cycle might disappear sometime in the next 0.8?–?2.4 Gyr. Future tests of this hypothesis will come from ground-based activity monitoring of Kepler targets that span the magnetic transition, and from asteroseismology with the Transiting Exoplanet Survey Satellite (TESS) mission to determine precise masses and ages for bright stars with known cycles.  相似文献   

9.
Using data from the Greenwich catalog, we determined the nonuniformity of the longitudinal distribution of sunspot groups as a function of the rotation period taken for the longitude determination. We estimated the statistical significance of the active longitudes found. A fairly high significance was achieved only for sunspot groups of the Northern Hemisphere and odd activity cycles and only for a synodic rotation period close to 28 days. In this case, one interval of active longitudes was found. The active longitudes are assumed to be associated with the fossil magnetic field frozen in the uniformly rotating radiative zone of the Sun.  相似文献   

10.
Recent observations of brightness variations on the Sun during the solar cycle have motivated us to re-examine the widely held view that cool, dark starspots, covering a significant fraction of the star, are the centers of magnetic activity on BY Dra stars. We propose that the magnetic regions are better described by a bright facular network, and that the dark areas which give rise to photometric rotational modulation are actually regions where the underlying quiet photosphere is seen. This interpretation is consistent with recent observations of late-type stars that show that bright areas covering much of the star have magnetic fields with strengths of several thousand gauss. It resolves several problems with the current model, including the size, location, and stability of the starspots required to match photometric and Doppler-imaging observations. It also has interesting observational implications for the correlation of photometric rotational modulation and long term brightness variations with other surface activity, and for the positions of magnetically active stars in the H-R diagram.Hubble Fellow.  相似文献   

11.
The time variations of solar and terrestrial magnetic fields (background magnetic field, power of the active regions, AE and aa-indices) have been studied. The analysis of these data shows that multiplets of 27, 13.5, 9 and 7 day periods exist in the solar data as in the terrestrial data. The solar multiplets 13.5 and 9 days appear predominantly close to the equatorial zone of the Sun and can plausibly be explained by the presence of active longitudes. The similarity of the variations in period in solar and geophysical data provides evidence that the magnetosphere of the Earth is actually a continuation of the heliosphere. The variations of the terrestrial magnetic field are mainly determined by the solar background magnetic fields in middle heliographic latitudes.  相似文献   

12.
The High Altitude Observatory's white light coronagraph aboard Skylab observed some 110 coronal transients - rapid changes in appearance of the corona - during its 227 days of operation. The longitudes of the origins of these transients were not distributed uniformly around the solar surface (51 of the 100 events observed in seven solar rotations arose from a single quadrant of longitude). Further, the frequency of transient production from each segment of the solar surface was well correlated with the sunspot number and Ca ii plage (area × brightness) index in the segment, rotation by rotation. This correlation implies that transients occur more often above strong photospheric and chromospheric magnetic fields, that is, in regions where the coronal magnetic field is stronger and, perhaps, more variable. This pattern of occurrence is consistent with our belief that the forces propelling transient material outward are, primarily, magnetic. A quantitative relation between transient production from an area and the Zürich sunspot number appropriate to that area is derived, and we speculate that the relation is independent of phase in the solar activity cycle. If true, the Sun may give rise to as many as 100 white light coronal transients per month at solar cycle maximum.Currently at Los Alamos Scientific Laboratory, Los Alamos, N.M., U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
Kuzanyan  Kirill  Bao  Shudong  Zhang  Hongqi 《Solar physics》2000,191(2):231-246
An attempt to extract maximum information on signatures of the alpha-effect from current helicity and twist density calculations in the solar photosphere is carried out. A possible interpretation of the results for developing the dynamo theory is discussed. The analysis shows that the surface magnetic current helicity is mainly negative/positive in the northern/southern hemispheres of the Sun. This indicates the actual alpha-effect at the photospheric level to be positive/negative, respectively. However, at the bottom of the convection zone, we may assume this effect to change the sign to negative/positive. We reveal some quantities related to the alpha-effect and discuss its spatial and temporal distribution. It is also found that there are a small number of active regions where the sign of the alpha-effect is opposite to that in most active regions. Such exceptional active regions seem to localize at certain active longitudes. We compare the determined regularities with theoretical predictions of the alpha-effect distribution in the solar convection zone.  相似文献   

14.
太阳磁场、较差自转和内部对流使得日面磁场与磁活动在很大的时间尺度和空间尺度范围均表现得相当复杂.其中最有名的是太阳活动的11年周期,或22年磁周期.在较小时间尺度上,从几秒到几小时,有时太阳大气中会发生一些壮观的爆发事件,如耀斑、日珥爆发、日冕物质抛射等.所有这些形式的事件都与太阳磁场紧密关联.简单评述了太阳磁场起源与观测方法,重点论述了不同尺度太阳磁场的空间分布与演化,介绍了从太阳磁活动现象统计得到的有关太阳磁场的几个典型特征,同时讨论了进一步研究的方向.  相似文献   

15.
许多行星 (如木卫三 ,水星 ,地球 ,木星和土星 )和恒星 (如太阳 )具有内部磁场。对这些磁场的存在和变化的解释对行星科学家和天体物理学家是一个巨大的挑战。本文试图总结行星和恒星的导电流体内部磁流体力学研究的新近发展和困难。一般由热对流驱动的流动通过磁流体力学过程产生并维持在行星和恒星中的磁场。在行星中磁流体力学过程强烈地受到转动 ,磁场和球几何位型的综合影响。其动力学的关键方面涉及科里奥利力和洛伦兹力间的相互作用。在太阳中其流线 ,即处于对流层的薄的剪切流层在太阳的磁流体力学过程中扮演了一个基本的角色 ,并由之产生了 1 1年的太阳黑子周期。本文也给出了一个新的非线性三维太阳发电机模型。  相似文献   

16.
Models of open magnetic structures on the Sun are presented for periods near solar minimum (CR 1626–1634) and near solar maximum (CR 1668–1678). Together with previous models of open magnetic structures during the declining phase (CR 1601–1611) these calculations provide clues to the relations between open structures, coronal holes, and active regions at different times of the solar cycle. Near solar minimum the close relation between active regions and open structures does not exist. It is suggested that near solar minimum the systematic emergence of new flux with the proper polarity imbalance to maintain open magnetic structures may occur primarily at very small spatial scales. Near solar maximum the role of active regions in maintaining open structures and coronal holes is strong, with large active regions emerging in the proper location and orientation to maintain open structures longer than typical active region lifetimes. Although the use of He I 10830 Å spectroheliograms as a coronal hole indicator is shown to be subject to significant ambiguity, the agreement between calculated open structures and coronal holes determined from He I 10830 Å spectroheliograms is very good. The rotation properties of calculated open structures near solar maximum strongly suggest two classes of features: one that rotates differentially similar to sunspots and active regions and a separate class that rotates more rigidly, as was the case for single large coronal holes during Skylab.  相似文献   

17.
B. R. Pettersen 《Solar physics》1989,121(1-2):299-312
We review the flaring activity of stars across the HR-diagram. Brightenings have been reported along the entire Main Sequence and in many stars off the Main Sequence. Some stars are decidedly young, others are in advanced stages of stellar evolution. Flares are common on stars with outer convection zones and outbursts have been reported also on other types of stars, although confirmations are needed for some of them.Analyses of flare occurrence sometimes find flares to be randomly distributed in time, and sometimes indicate a tendency for flares to come in groups. Preferred active longitudes have been suggested. Recent solar results, where the occurrence rate for flares is found to exhibit a periodicity of 152 days, suggest that stellar flare data should be reanalyzed over long time baselines to see if the present confusing situation can be resolved.The radiation from stellar flares is dominated by continuum emission and about equal amounts of energy have been recorded in the optical, UV, and X-ray regions of the spectrum. In solar flares strong continuum emission is rarely recorded and a large collection of bright emission lines takes prominence. Small flares occur more frequently than large ones and the latter have longer time-scales. Flare energies can exceed 1037 erg. The most productive flare stars are those where the convective envelopes occupy large volumes. Slow stellar rotation rates are believed to reduce the level when the star has been braked significantly from its young rotation rate.  相似文献   

18.
We have studied the 27-day variations and their harmonics in Galactic cosmic ray (GCR) intensity, solar wind velocity, and interplanetary magnetic field (IMF) components during the recent prolonged solar minimum 23/24. The time evolution of the quasi-periodicity in these parameters connected with the Sun’s rotation reveals that the synodic period of these variations is ≈?26?–?27 days and is stable. This means that the changes in the solar wind speed and the IMF are related to the Sun’s near-equatorial regions in considering the differential rotation of the Sun. However, the solar wind parameters observed near the Earth’s orbit provide only the conditions in the limited local vicinity of the equatorial region in the heliosphere (within ±?7° in latitude). We also demonstrate that the observed period of the GCR intensity connected with the Sun’s rotation increased up to ≈?33?–?36 days in 2009. This means that the process that drives the 27-day GCR intensity variations takes place not only in the limited local surroundings of the equatorial region but in the global 3-D space of the heliosphere, covering also higher latitude regions. A relatively long period (≈?34 days) found for 2009 in the GCR intensity gives possible evidence of the onset of cycle 24 due to active regions at higher latitudes and rotating slowly because of the Sun’s differential rotation. We also discuss the effect of differential rotation on the theoretical model of the 27-day GCR intensity variations.  相似文献   

19.
The active longitudes of indices for sunspot activity and solar flares were detected and investigated by the method of isoline for the period July 1, 1957 to December 31, 1962. In the most active hemisphere of the sun the active longitudes of sunspot and flares appear to coincide. It is shown that the rate of concentration in the active longitudes is the highest for more important formations. Arguments for the reality of the active longitudes of sunspot areas are advanced. In conclusion the question of the influence of the uncertainty of the solar rotation period on the detection of active longitudes of flares is considered.  相似文献   

20.
Mendoza  Blanca 《Solar physics》1999,188(2):237-243
A positive correlation is suggested between solar rotation rate and solar cycle length for cycles 12 to 20. This result seems to be opposite to recent observations in solar-type stars and the Sun and yields inverse correlations between cycle lengths and chromospheric activity, but it agrees with previous work with solar-type stars and the Sun suggesting a positive correlation between cycle length and rotation rate. Estimates of solar cycle length for the Maunder minimum suggest a length 17 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号