首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Chemically zoned porphyroblasts in metamorphic rocks indicate that diffusional processes could not maintain equilibrium conditions on a grain scale during porphyroblast growth or establish it afterwards. An effect of this inability to maintain equilibrium is the progressive removal of elements forming garnet cores from any metamorphic reaction that occurs at the porphyroblast boundaries or in the matrix of the rock. To examine this effect on mineral assemblages, the Bence–Albee matrix correction was applied to X‐ray intensity maps collected using eclogite samples from northern New Caledonia in order to determine the chemical composition of all parts of the sample. The manipulation of these element maps allows a quantitative analysis of the fractionation of the bulk rock composition between garnet cores and the matrix. A series of calculated equilibrium‐volume compositions represents the change in matrix chemistry with progressive elemental fractionation as a consequence of prograde garnet growth under high‐P conditions. Pressure–temperature pseudosections are calculated for these compositions, in the CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O system. Assemblages, modal proportions and mineral textures observed in the New Caledonian eclogites can be closely modelled by progressively ‘removing’ elements forming garnet cores from the bulk rock composition. The pseudosections demonstrate how chemical fractionation effects the peak metamorphic assemblage, prograde textures and the development of retrograde assemblages.  相似文献   

2.
The understanding of the evolution of microstructures in a metamorphic rock requires insights into the nucleation and growth history of individual grains, as well as the coarsening processes of the entire aggregate. These two processes are compared in impure carbonates from the contact metamorphic aureole of the Adamello pluton (N‐Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix phase, but additionally contain variable amounts of other minerals, the so‐called second phases. These second phases are mostly silicate minerals and can be described in a KCMASHC system (K2O, CaO, MgO, Al2O3, SiO2, H2O, CO2), but with variable K/Mg ratios. The modelled and observed metamorphic evolution of these samples are combined with the quantification of the microstructures, i.e. mean grain sizes and crystal size distributions. Growth of the matrix phase and second phases strongly depends on each other owing to coupled grain coarsening. The matrix phase is controlled by the interparticle distances between the second phases, while the second phases need the matrix grain boundary network for mass transfer processes during both grain coarsening and mineral reactions. Interestingly, similar final mean grain sizes of primary second phase and second phases newly formed by nucleation are observed, although the latter formed later but at higher temperatures. Moreover, different kinetic processes, attributed to different driving forces for growth of the newly nucleated grains in comparison with coarsening processes of the pre‐existing phases, must have been involved. Chemically induced driving forces of grain growth during reactions are orders of magnitudes larger compared to surface energy, allowing new reaction products subjected to fast growth rates to attain similar grain sizes as phases which underwent long‐term grain coarsening. In contrast, observed variations in grain size of the same mineral in samples with a similar T–t history indicate that transport properties depend not only on the growth and coarsening kinetics of the second phases but also on the microstructure of the dominant matrix phase during coupled grain coarsening. Resulting microstructural phenomena such as overgrowth and therefore preservation of former stable minerals by the matrix phase may provide new constraints on the temporal variation of microstructures and provide a unique source for the interpretation of the evolution of metamorphic microstructures.  相似文献   

3.
The microstructural evolution of polymineralic contact metamorphic calcite marbles (Adamello contact aureole) with variable volume fractions of second-phase minerals were quantitatively analyzed in terms of changes in grain size and nearest neighbor relations, as well as the volume fractions, dispersion and occurrences of the second phases as a function of changing metamorphic conditions. In all samples, the calcite grain size is controlled by pinning of grain boundaries by second phases, which can be expressed by the Zener parameter (Z), i.e., the ratio between size and volume fraction of the second phases. With increasing peak metamorphic temperature, both the sizes of matrix grains and second phases increase in dependence on the second-phase volume fraction. Two distinct coarsening trends are revealed: trend I with coupled grain coarsening limited by the growth of the second phases is either characterized by large-sized or a large number of closely spaced-second phase particles, and results finally in a dramatic increase in the calcite grain size with Z. Trend II is manifest by matrix controlled grain growth, which is retarded by the presence of single second-phase particles that are located on calcite grain boundaries. It is supported by grain boundary pinning induced by triple junctions, and the calcite grain size increases moderately with Z. The two different grain coarsening trends manifest the transition between relatively pure polymineralic aggregates (trend II) and microstructures with considerable second-phase volume fractions of up to 0.5. The variations might be of general validity for any polymineralic rock, which undergoes grain coarsening during metamorphism. The new findings are important for a better understanding of the initiation of strain localization based on the activation of grain size dependent deformation mechanisms.  相似文献   

4.
Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature‐induced grain coarsening. Despite this large‐scale trend, a considerable grain size scatter occurs on the outcrop‐scale indicating local influence of second‐order effects such as thermal perturbations, fluid flow and second‐phase particles. Second‐phase particles, whose sizes range from nano‐ to the micron‐scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron‐scale second‐phase particles, or to samples containing a large number of nano‐scale particles. The obtained data set suggests that the second phases induce a temperature‐controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D = C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second‐phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian‐type distributions of the pure samples. In contrast, fluid‐enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable δ18O and δ13C isotope ratios in fluid‐affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid‐induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1. To summarize, considerable grain size variations of up to one order of magnitude can locally result from second‐order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.  相似文献   

5.
Garnet‐mica schists from the Scottish Highlands provide new insight into an important mechanism of phyllosilicate growth, termed ‘crack‐fill porphyroblastesis’. It is shown that grain boundary dilatancy, microcracking and porphyroblast‐matrix decoupling all play a significant role in facilitating growth in regimes of noncoaxial shear. With respect to chlorite porphyroblasts, there are three growth stages. Following nucleation, the initial phase of growth is by progressive matrix replacement, to preserve inclusion trails of fine carbonaceous material. The second growth stage produced new optically continuous inclusion‐free chlorite on the {001} margins of those crystals at a high angle to the schistosity. This growth results from decoupling at the porphyroblast–matrix contact on those margins at a high angle to the principal axis of extension. The development of dilatant cracks at porphyroblast margins provides a sink for material migrating down Pf and chemical potential gradients. This causes precipitation of new optically continuous ‘clear’ chlorite on the pre‐existing, heavily included core. The porphyroblast–matrix boundary continues to dilate after porphyroblast growth had terminated, producing plano‐convex quartz‐rich strain shadows. Similar growth behaviour is recognised in biotite porphyroblasts, indicating that ‘crack‐fill porphyroblastesis’ is an important growth mechanism for phyllosilicates in actively deforming metamorphic rocks. It also indicates that decoupling and crack‐fill development at porphyroblast margins could be important in controlling the pattern of material transfer, and may have significant implications for matrix permeability and fluid‐flow characteristics.  相似文献   

6.
The assumption of oxygen isotope and major element equilibrium during prograde metamorphism was tested using staurolite‐grade pelitic schists that have undergone sequential porphyroblast growth and multiple episodes of recrystallization of matrix minerals and foliation development. Textural relationships are used to infer a metamorphic history that involves garnet growth followed by staurolite growth, with each porphyroblast growth event followed by at least one period of recrystallization of matrix minerals. Conventional geothermobarometry using Qtz–Grt–Pl–Ms–Bt ± St equilibria yields peak P–T conditions of c. 625 °C at 9–11 kbar, consistent with KMnFMASH petrogenetic grid predictions for stability of the assemblage Grt + St + Bt. Qtz–Grt oxygen isotope fractionations yield apparent temperatures of c. 590 °C and Qtz–St fractionations yield an apparent temperature of c. 595 °C. Diffusional modelling indicates that quartz isotopic compositions were reset by c. 30 °C via retrograde isotopic diffusional exchange with micas. The isotopic temperatures appear to be in excellent agreement with one another, and suggest oxygen isotope equilibrium was attained between garnet and staurolite at c. 625 °C. However, the agreement of Qtz–Grt and Qtz–Str isotopic temperatures is not consistent with petrographic observations (garnet grew before staurolite) and petrogenetic grid constraints that predict that garnet grows over a temperature interval of c. 525–550 °C. Given that: (i) oxygen diffusion rates in staurolite and garnet are slow enough to render an individual porphyroblast effectively closed to exchange after it forms; and (ii) matrix minerals are able to exchange isotopes via recrystallization during each period of deformation; garnet and staurolite could not have simultaneously achieved oxygen isotope equilibrium with each other or with minerals in the recrystallized matrix. Thus, the Qtz–Grt fractionations, which yield apparent temperatures that are in apparent agreement with peak metamorphic temperature and apparent temperatures for Qtz–St fractionations, cannot be fractionations resulting from equilibrium isotopic exchange. Instead, they are apparent fractionations between porphyroblasts formed at different temperature and times in the prograde P–T–D path, and quartz that recrystallized and exchanged with micas and plagioclase during several phases of deformation.  相似文献   

7.
A dramatic demonstration of the role of intergranular solubility in promoting chemical equilibration during metamorphism is found in the unusual zoning of garnet in pelitic schist exposed at Harpswell Neck, Maine, USA. Many garnet crystals have irregular, patchy distributions of Mn, Cr, Fe and Mg in their inclusion‐rich interiors, transitioning to smooth, concentric zoning in their inclusion‐poor outer rims; in contrast, zoning of Ca and Y is comparatively smooth and concentric throughout. We re‐assess the disputed origin of these zoning features by examining garnet growth in the context of the thermal and structural history of the rocks, and by evaluating the record of fluid–rock interaction revealed in outcrop‐scale veining and fluid‐inclusion assemblages. The transition in the character of garnet zoning correlates with the onset of a synkinematic, simple‐shear‐dominated phase of garnet growth and with a shift in the composition of the intergranular fluid from CO2‐rich to H2O‐rich. Compositional variations in garnet are therefore best explained by a two‐stage growth history in which intergranular diffusive fluxes reflect differences in the concentration of dissolved species in these two contrasting fluids. Interiors of garnet crystals grew in the presence of a CO2‐rich fluid, in which limited solubility for Mn and Cr (and perhaps Fe and Mg) produced patchy disequilibrium overprint zoning, while appreciable solubility for Ca and Y permitted their rock‐wide equilibration. Rims grew in the presence of an H2O‐rich fluid, in which high intergranular concentrations for all elements except Cr enabled diffusion over length scales sufficient for rock‐wide equilibration. This striking example of partial chemical equilibrium during reaction and porphyroblast growth implies that thermal effects may commonly be subsidiary in importance to solubilities in the intergranular medium as determinants of length scales for metamorphic equilibration.  相似文献   

8.
Inclusion – porphyroblast and porphyroblast – porphyroblast relationships show that abundant albite in mica schists in the Caledonides of the SW Scottish Highlands are part of the Barrovian metamorphic assemblage. Growth early in the D2 deformational phase of porphyroblast cores followed the growth of Mn‐rich garnet but preceded the growth of porphyroblasts of the index mineral almandine. Two sets of inclusion trails in the albite correspond to the regionally expressed S1 and S2. Straight trails of muscovite, chlorite, quartz, epidote and the earliest growth of biotite make up S1. Crenulated trails express deformation of S1 early in D2 with muscovite, chlorite, biotite, quartz, epidote and the Mn‐rich garnet associated with the development of S2 crenulation cleavage. The geometries of these trails uniquely record early stages of D2 deformational history. An 0?3 growth is related to the temporal coincidence of the formation of S1–S2 crenulation cleavage hinges as favourable sites for nucleation and the release of large amounts of water from prograde reactions during tectonothermal reconstitution of first cycle immature sediments with a volcanic component. The main characteristics of the regionally expressed D2 schistosity were developed during the major grain coarsening that followed both albite and almandine porphyroblast growth. Essentially inclusion‐free An 4?19 rims grew on the inclusion‐containing cores in the almandine zone in the later stages of schistosity growth and unoriented porphyroblasts of muscovite, biotite and chlorite indicate that mineral growth extended from the later stages of D2 to post‐D2. Previous interpretations of the albite porphyroblast growth having been during D4 to post‐D4 contemporaneous with retrogression are inconsistent with the microstructural evidence.  相似文献   

9.
A detailed analysis of chemical zoning in two garnet crystals from Harpswell Neck, Maine, forms the basis of an interpretation of garnet nucleation and growth mechanisms. Garnet apparently nucleates initially on crenulations of mica and chlorite and quickly overgrows the entire crenulation, giving rise to complex two‐dimensional zoning patterns depending on the orientation of the thin section cut. Contours of Ca zoning cross those of Mn, Fe and Mg, indicating a lack of equilibrium among these major garnet constituents. Zoning of Fe, Mg and Mn is interpreted to reflect equilibrium with the rock matrix, whereas Ca zoning is interpreted to be controlled by diffusive transport between the matrix and the growing crystal. Image analysis reveals that the growth of garnet is more rapid along triple‐grain intersections than along double‐grain boundaries. Moreover, different minerals are replaced by garnet at different rates. The relative rate of replacement by garnet along double‐grain boundaries is ordered as muscovite > chlorite > plagioclase > quartz. Flux calculations reveal that replacement is limited by diffusion of Si along double‐grain boundaries to or from the local reaction site. It is concluded that multiple diffusive pathways control the bulk replacement of the rock matrix by garnet, with Si and Al transport being rate limiting in these samples.  相似文献   

10.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

11.
Chemical zoning in the outer few 10s of microns of garnet porphyroblasts has been investigated to assess the scale of chemical equilibrium with matrix minerals in a pelitic schist. Garnet porphyroblasts from the Late Proterozoic amphibolite facies regional metamorphic mica schists from Glen Roy in the Scottish Highlands contain typical prograde growth zoning patterns. Edge compositions have been measured via a combination of analysis of traverses across the planar edges of porphyroblast surfaces coupled to X-ray mapping of small areas within polished thin sections at the immediate edge of the porphyroblasts. These approaches reveal local variation in garnet composition, especially of grossular (Ca) and almandine (Fe) components, with a range at the edge from <7 mol.% grs to >16 mol.% grs, across distances of less than 50 µm. This small-scale patchy compositional zoning is as much variation as the core–rim compositional zoning across the whole of a 3 mm porphyroblast. Ca and Fe heterogeneity occurs on a scale suggesting a combination of inefficient diffusive exchange across grain boundaries during prograde growth and the evolving microtopography of the porphyroblast surface control garnet composition. The latter creates haloes of compositional zoning adjacent to some inclusions, which typically extend from the inclusion towards the porphyroblast edge during further growth. The lack of a consistent equilibrium composition at the garnet edge is also apparent in the internal zoning of the porphyroblast and so processes occurring during entrapment of some mineral inclusions have a profound influence on the overall chemical zoning. Garnet compositions and associated zoning patterns are widely used by petrologists to reconstruct P–T–t paths for crustal rocks. The evidence of extremely localized (10–50 µm scale) equilibrium during growth further undermines these approaches.  相似文献   

12.
Differences in rates of nucleation and diffusion‐limited growth for biotite porphyroblasts in adjacent centimetre‐scale layers of a garnet‐biotite schist from the Picuris Mountains of New Mexico are revealed by variations in crystal size and abundance between two layers with strong compositional similarity. Relationships between fabrics recorded by inclusion patterns in biotite and garnet porphyroblasts are interpreted to reflect garnet growth following biotite growth, without substantial alteration of the biotite sizes. Sizes and locations of biotite crystals, obtained via high‐resolution X‐ray computed tomography, document that of the two adjacent layers, one has a larger mean crystal volume (9.5 × 10?4v. 2.4 × 10?4 cm3), fewer biotite crystals per unit volume (232 v. 576 crystals cm?3), and a higher volume fraction of biotite (23%v. 14%). The two layers have similar mineral assemblages and mineral chemistry. Both layers show evidence for diffusional control of nucleation and growth. Pseudosection analysis suggests that the large‐biotite layer began to crystallize biotite at a temperature ~67 °C greater than the small‐biotite layer. Diffusion rates differed between layers, because of their different temperature ranges of crystallization, but this effect can be quantified. The bulk compositional difference between the layers, manifested in different modal amounts of biotite, has an effect on the biotite sizes that is also quantifiable and insufficient to account for the difference in biotite size. After these other possible causes of variation in crystal sizes have been eliminated, variability in nucleation and diffusion rates remain as the dominant factors responsible for the difference in porphyroblastic textures. Numerical simulations suggest that relative to the small‐biotite layer, the large‐biotite layer experienced elevated diffusion rates because of the higher crystallization temperature, as well as increased nucleation rates in order to achieve the observed size and number density of crystals. The simulations can replicate the observed textures only by invoking unreasonably large values for the thermal dependence of nucleation rates (activation energies), strongly suggesting that the observed textural differences arise from variations between layers in the abundance and energetics of potential nucleation sites.  相似文献   

13.
At first sight, experimental results and observations on rocks suggest that the Zr content in rutile, where equilibrated with quartz and zircon, should be a useful thermometer for metamorphic rocks. However, diffusion data for Zr in rutile imply that thermometry should not, for plausible rates of cooling, give the high temperatures commonly observed in high‐grade metamorphic rocks. It is suggested here that such observations can be accounted for by high‐T diffusive closure of Si in rutile, causing the interior of rutile grains to become insensitive to the thermometer equilibrium well above the temperature of Zr diffusive closure. Paired with comparatively slow grain boundary diffusion and problematic zircon nucleation, this allows for cases of Zr retention in rutile through temperatures where Zr is still diffusively mobile within rutile grains. Other observations that may be accounted for in this context are large inter‐grain ranges of rutile Zr contents uncorrelated with rutile grain size, and flat Zr profiles across individual rutile grains, counter to what would be expected from diffusive closure. A consequence is that it is unlikely that Zr‐in‐rutile thermometry will be useful for estimating rock cooling rates.  相似文献   

14.
Chemical zoning, recorded by grain growth during metamorphism, is a key source of information about P–T–t paths. Interpretation of these data must be carried out using appropriate models and recognizing their inherent assumptions. To assist with defining how zoned minerals form, a set of geometric criteria for three types of chemical zoning developed in minerals (diffusion, growth and grain recycling) is outlined. Re‐equilibration of minerals by lattice diffusion causes zoning if the re‐equilibration is incomplete. Growth of porphyroblasts is commonly considered in pelites, but in metagranitoids, large monophase domains undergo coarsening by recycling of material from one grain to another as grain boundaries migrate driven by surface energy. This type of grain size increase is termed here ‘grain recycling’. Zoning developed during grain recycling due to equilibration of the recycled material with grain‐boundary chemistry is termed ‘grain‐recycling zoning’. Furthermore, short lattice diffusion lengths relative to grain sizes cause metamorphic fractionation because material in the grain cores is not in communication thermodynamically with the rest of the rock. A new model is derived for this sort of grain size increase coupled with metamorphic reactions using Theriak–Domino. An example is given of plagioclase undergoing an increase in anorthite content as epidote breaks down during amphibolite facies metamorphism of a metagranitoid. Agreement between naturally occurring zoning profiles and those derived from modelled P–T–t paths shows that this model can be used to extract metamorphic conditions from rocks which are not accessible using conventional thermobarometry.  相似文献   

15.
The mechanisms that govern porphyroblast crystallization are investigated by comparing quantitative textural data with predictions from different crystallization models. Such numerical models use kinetic formulations of the main crystallization mechanism to predict textural characteristics, such as grain size distributions. In turn, data on porphyroblast textures for natural samples are used to infer which mechanism dominated during their formation. Whereas previous models assume that the rate‐limiting step for a porphyroblast producing reaction is either transport or growth, the model advanced in this study considers the production of nutrients for porphyroblasts as a potentially rate‐limiting factor. This production reflects the breakdown of (metastable) reactants, which at a specific pressure (P) and temperature (T) depends on the bulk composition of the sample. The production of nutrients that potentially contribute to the formation of porphyroblasts is computed based on thermodynamic models. The conceptual model assumes that these nutrients feed into some intergranular medium, and products form by nutrient consumption from that medium, with rates depending on reaction affinity. For any sequence of PT conditions along a PTt path, the numerical model first computes an effective supersaturation (σeff) of the product phase(s), then an effective nucleation rate (J), and finally the amount of (porphyroblast) growth. As a result, the model is useful in investigating how the textural characteristics of a sample (of given bulk composition) depend on the PTt path followed during porphyroblast crystallization. The numerical model is tested and validated by comparing simulation results with quantitative textural data for garnet porphyroblasts measured in samples from the Swiss Central Alps.  相似文献   

16.

Deformation partitioning in pluton wall‐rocks during granite intrusion that is synchronous with regional tectonism potentially creates structures suggesting different timing of emplacement. This is due to variations in style and intensity of fabric development, particularly porphyroblast‐matrix microstructures. In the South Palmer River region, detailed mapping plus microstructural examination of matrix and porphyroblast‐matrix relationships assist correlation of deformation elements across variations in deformation style and intensity. The results indicate that the emplacement of each granite body occurred during the compressional Permian D4 event. The fabrics that developed regionally and in the pluton/wall‐rock systems during D4 show differing degrees of intensity and style, which are spatially related to the intensity of D4 fabric development in the adjacent country rock. Granite isotopic ages support non‐diachronous formation of D4 structures across the region.  相似文献   

17.
Here, we present results of the first 40Ar/39Ar dating of osumilite, a high‐T mineral that occurs in some volcanic and high‐grade metamorphic rocks. The metamorphic osumilite studied here is from a metapelitic rock within the Rogaland–Vest Agder Sector, Norway, an area that experienced regional granulite facies metamorphism and subsequent contact metamorphism between 1,100 Ma and 850 Ma. The large grain size (~1 cm) of osumilite in the studied rock, which preserves a nominally anhydrous assemblage, increases the potential for large portions of individual grains to have remained essentially unaffected by the effects of diffusive argon loss, potentially preserving prograde ages. Step‐heating diffusion experiments yielded a maximum activation energy of ~461 kJ/mol and a pre‐exponential factor of ~8.34 × 108 cm2/s for Ar diffusion in osumilite. These parameters correspond to a relatively high closure temperature of ~620°C for a cooling rate of 10°C/Ma in an osumilite crystal with a 175 µm radius. Fragments of osumilite separated from the sample preserve a range of ages between c. 1,070 and 860 Ma. The oldest ages are inferred to date the growth of coarse‐grained osumilite during prograde granulite facies regional metamorphism, which pre‐date contact metamorphism that has historically been ascribed to the growth of osumilite in the region. The majority of fragments record ages between c. 920 and 860 Ma, inferred to reflect the growth of osumilite and/or diffusive argon loss during contact metamorphism. The retention of old 40Ar/39Ar dates was facilitated by the low diffusivity of Ar in osumilite (i.e. a closed system), large grain sizes, and anhydrous metamorphic conditions. The ability to date osumilite with the 40Ar/39Ar method provides a valuable new thermochronometer that may constrain the timing and duration of high‐T magmatic and metamorphic events.  相似文献   

18.
Eight techniques to quantify the deposition of aeolian dust on horizontal surfaces were tested in a wind tunnel. The tests included three theoretical techniques and five measurement techniques. The theoretical techniques investigated were: the gradient technique, the inferential technique without grain-shape correction, and the inferential technique corrected for grain shape. The measuring techniques included the following surrogate surfaces: a water surface, a glass surface, a metal surface, a vertical array of metal plates, and an inverted frisbee filled with glass marbles. The efficiency of the techniques was investigated for the sediment as a whole (all grain sizes together) as well as for a large number of grain sizes extending from 1 to 104 μm. The surrogate surfaces showed more or less comparable catch efficiencies, although the water surface nearly always caught the highest quantities of dust and the marble-filled frisbee and the vertical array of metal plates the lowest quantities of dust. The dust fluxes calculated by theoretical methods were markedly different from those obtained by direct measurements. The fluxes calculated by the inferential technique approximated those of the direct measurements only for grain sizes between 30 and 40 μm. For smaller and coarser grains, deviations from the measured fluxes were high. The gradient method, in its turn, provided extremely low calculated fluxes for grains in all size classes investigated. The latter technique was not considered very reliable for the dust used in the tests.  相似文献   

19.
Strain rates from snowball garnet   总被引:3,自引:0,他引:3  
Spiral inclusion trails in garnet porphyroblasts are likely to have formed due to simultaneous growth and rotation of the crystals, during syn‐metamorphic deformation. Thus, they contain information on the strain rate of the rock. Strain rates may be interpreted from such inclusion trails if two functions are known: (1) The relationship between rotation rate and shear strain rate; (2) the growth rate of the crystal. We have investigated details of both functions using a garnetiferous mica schist from the eastern European Alps as an example. The rotation rate of garnet porphyroblasts was determined using finite element modelling of the geometrical arrangement of the crystals in the rock. The growth rate of the porphyroblasts was determined by using the major and trace element distributions in garnet crystals, thermodynamic pseudosections and information on the grain size distribution. For the largest porphyroblast size fraction (size L=12 mm) we constrain a growth interval between 540 and 590 °C during the prograde evolution of the rock. Assuming a reasonable heating rate and using the angular geometry of the spiral inclusion trails we are able to suggest that the mean strain rate during crystal growth was of the order of =6.6 × 10?14 s?1. These estimates are consistent with independent estimates for the strain rates during the evolution of this part of the Alpine orogen.  相似文献   

20.
Polyphase metamorphic paragneisses from the drill core of the continental deep drilling project (KTB; NW Bohemian Massif) are characterized by peak pressures of about 8 kbar (medium‐P metamorphism) followed by strain accumulation at T >650 °C, initially by dislocation creep and subsequently by diffusion creep. U–Pb monazite ages and Rb–Sr whole‐rock data vary in the dm‐scale, indicating Ordovician and Mid‐Devonian metamorphic events. Such age variations are closely interconnected with dm‐scale domainal variations of microfabrics that indicate different predominant deformation mechanisms. U–Pb monazite age variations dependent on microfabric domains exceed grain‐size‐dependent age variations. In ‘mylonitic domains’ recording high magnitudes of plastic strain, dislocation creep and minor static annealing, monazite yields concordant and near concordant Lower Ordovician U–Pb ages, and the Rb–Sr whole‐rock system shows isotopic disequilibrium at an mm‐scale. In ‘mineral growth/mobilisate domains’, in which diffusive mass transfer was a major strain‐producing mechanism promoting diffusion creep of quartz and feldspar, and in which static recrystallization (annealing) reduced the internal free energy of the strained mineral aggregates, concordant U–Pb ages are Mid‐Devonian. Locally, in such domains, Rb–Sr dates among mm3‐sized whole‐rock slabs reflect post‐Ordovician resetting. In ‘transitional domains’, the U–Pb‐ages are discordant. We conclude that medium‐P metamorphism occurred at 484±2 Ma, and a second metamorphic event at 380–370 Ma (Mid‐Devonian) caused progressive strain in the rocks. Dislocation creep at high rates, even at high temperatures, does not reset the Rb–Sr whole‐rock system, while diffusion creep at low rates and stresses (i.e. low ε/Deff ratios), static annealing and the presence of intergranular fluids locally assist resetting. At temperatures above 650 °C, diffusive Pb loss did not reset Ordovician U–Pb monazite ages, and in domains of overall high imposed strain rates and stresses, resetting was not assisted by dynamic recrystallization/crystal plasticity. However, during diffusion creep at low rates, Pb loss by dissolution and precipitation (‘recrystallization’) of monazite produces discordance and Devonian‐concordant U–Pb monazite ages. Hence, resetting of these isotope systems reflects neither changes of temperature nor, directly, the presence or absence of strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号