首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary. The major objective of the Central Australian seismic experiment is to investigate the structural evolution of the Arunta Block and the Ngalia and Amadeus Basins. A regional north-south reflection line of 420 km length from the Northern Arunta Province to the southern part of the Amadeus Basin was recorded in 1985. The most significant basement features are prominent bands of reflectors from beneath the Northern Arunta Province and the Ngalia Basin at times of between 4 and 10 s that dip towards the north. Deep crustal features south of the Ngalia Basin are less clear except in the Redbank Zone. Bands of deep reflectors similar to those observed in the north occur at times of between 5 and 10 s beneath the southern part of the Amadeus Basin. Additional seismic profiling included a reflection line of 40 km length recorded across the northern margin of the Redbank Zone, three expanding spread reflection profiles and a tomographic experiment. An east-west seismic refraction profile of 400 km length was recorded within the Arunta Block, and suggests an average crustal thickness of 55 km.  相似文献   

2.
Summary. The active Australian-Pacific plate boundary passes through New Zealand. In the north, the Pacific plate subducts beneath the Australian plate with an accretionary wedge forming the eastern continental (Hikurangi) margin of the North Island. The structure of the region behind the Hikurangi margin changes from the extensional back-arc basin under central North Island to a postulated crustal downwarp under the southern North Island. A 100 km long multichannel seismic reflection profile was recorded across the region of crustal downwarp. The data show discontinuous coherent reflectors dipping westwards at the east end of the profile, and east dipping reflectors at the west end, from depths of 9 to 15 s two way time. Simple hand migration of these events indicate that the east dipping reflectors, interpreted as the base of the Australian plate crust, abut against the west dipping reflectors which are interpreted as marking the top of the subducted Pacific plate. Detailed earthquake hypocentre locations in the area show a dipping zone of high seismicity, the top of which coincides closely with the west dipping events, thus supporting this interpretation.  相似文献   

3.
Summary. The continent-ocean transition adjacent to Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic profiles. The interpretation of the explosive expanding spread profiles (ESPs) which were shot as part of this survey are discussed here in detail. Extensive seaward dipping reflectors are developed in the upper crust across the entire margin. These seaward dipping reflectors continue northwards on the Faeroes and Vøring margins, where they have been shown to be caused by basaltic lavas, as well as on the conjugate margin of East Greenland. The dipping reflectors are an important feature of the rifting history of the margin and show that extensive volcanism was associated with the extension. The ESPs show clear seismic arrivals out to ranges of 100 km. Wide-angle Moho reflections can be seen on all the lines as well as good mid and lower crustal arrivals. The determination of seismic velocity structure was constrained by ray tracing and by amplitude modelling using reflectivity synthetic seismograms. The results from the ESPs show that there is a thick region of lower crustal material beneath the margin with an unusually high crustal velocity of 7.3–7.4 km s−1. This lower crustal material reaches a maximum thickness of 14 km beneath the central part of the margin and is terminated at depth by the Moho. The lower crustal lens of high-velocity material is interpreted as underplated or intruded igneous rocks associated with the large volumes of extrusive basaltic lavas, now seen as dipping reflectors on the margin.  相似文献   

4.
Summary. In order to investigate the target area of the Continental Deep Drilling (KTB) in the Oberpfalz a network of six seismic reflection lines was acquired in 1985 using the Vibroseis technique. The average length of these lines was 50 km. In addition, the 185 km long NW/SE striking line DEKORP 4 with its short appendix line 4-Q of 40 km length was acquired with the same technique. The results reveal a strongly structured upper crust. This is in contrast with previous surveys in the German Variscides which show a poorly reflective upper crust and a strongly reflective lower crust. Except for the S part of DEKORP 4 in the Oberpfalz area the Mono is only weakly reflective. In addition to the Vibroseis survey 96 shots along line DEKORP 4 were recorded by conventional reflection techniques and by portable reflection and refraction stations from university institutes and geological surveys in order to obtain wide-angle reflection and expanding spread data.  相似文献   

5.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

6.
Summary. The crustal structure beneath the exposed terranes of southern Alaska has been explored using coincident seismic refraction and reflection profiling. A wide-angle reflector at 8–9 km depth, at the base of an inferred low-velocity zone, underlies the Peninsular and Chugach terranes, appears to truncate their boundary, and may represent a horizontal decollement beneath the terranes. The crust beneath the Chugach terrane is characterized by a series of north-dipping paired layers having low and high velocities that may represent subducted slices of oceanic crust and mantle. This layered series may continue northward under the Peninsular terrane. Earthquake locations in the Wrangell Benioff zone indicate that at least the upper two low-high velocity layer pairs are tectonically inactive and that they appear to have been accreted to the base of the continental crust. The refraction data suggest that the Contact fault between two similar terranes, the Chugach and Prince William terranes, is a deeply penetrating feature that separates lower crust (deeper than 10 km) with paired dipping reflectors, from crust without such reflectors.  相似文献   

7.
Summary. The unified seismic exploration program, consisting of 345 km of deep reflection profiling, a 200 km refraction profile, an expanding spread profile and near-surface high resolution reflection meaasurements, revealed a strongly differentiated crust beneath the Black Forest. The highly reflective lower crust contains numerous horizontal and dipping reflectors at depths of 13-14 km down to the crust-mantle boundary (Moho). The Moho appears as a flat horizontal first order discontinuity at a relatively shallow level of 25–27 km above a transparent upper mantle. From modelling of synthetic near-vertical and wide-angle seismograms using the reflectivity method the lower crust is supposed to be composed of laminae with an average thickness of about 100 m and velocity differences of greater than 10% increasing from top to bottom. The upper crust is characterised by mostly dipping reflectors, associated with bivergent underthrusting and accretion tectonics of Variscan age and with extensional faults of Mesozoic age. A bright spot at 9.5 km depth is characterised by low velocity material suggesting a fluid trap. It appears on all of the three profiles in the centre of the intersection region. The upper crust seems to be decoupled from the lowest crust by a relatively transparent zone which is' also identified as a low-velocity zone. This low velocity channel is situated directly above the laminated lower crust. The laminae in the Rhinegraben area are displaced vertically to greater depths indicating an origin before Tertiary rift formation and a subsidence of the whole graben wedge.  相似文献   

8.
Around 4370 km of new seismic reflection data, collected along the East Greenland margin between 71°30'N and 77°N in 2003, provide a first detailed view of the sediment distribution and tectonic features along the East Greenland margin. After processing and converting the data to depth, we correlated ODP-Site 913 stratigraphy into the new seismic network. Unit GB-2 shows the greatest glacial sediment deposits beneath the East Greenland continental shelf. This unit is characterized by the beginning of prograding sequences and has, according to our stratigraphic correlation, a Middle Miocene age. It might have been caused by rapid changes in sea level and/or glacial erosion by an early ice sheet or glaciers along the coast. A basement high, presumably a 360 km long basement structure at 77°N–74°54'N, prevents continuous sediment transport from the shelf into the deep sea area in times before 15 Myr. The origin of this prominent structure remains speculative since no rock sample from this structure is available. Seaward dipping reflectors at the eastern flank of this structure strongly support that it is a volcanic construction and is most likely emplaced on continental or transitional crust. The compilation of sediment thickness provide an insight into the regional sediment distribution in the Greenland Basin. An average sediment thickness of 1 km is observed. The north bordering Boreas Basin has a sediment thickness of 1.8 km close to the Greenland fracture zone (GFZ).  相似文献   

9.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   

10.
Seismic reflection profiles from Mesozoic oceanic crust around the Blake Spur Fracture Zone (BSFZ) in the western North Atlantic have been widely used in constraining tectonic models of slow-spreading mid-ocean ridges. These profiles have anomalously low basement relief compared to crust formed more recently at the Mid-Atlantic Ridge at the same spreading rate. Profiles from other regions of Mesozoic oceanic crust also have greater relief. The anomalous basement relief and slightly increased crustal thickness in the BSFZ survey area may be due to the presence of a mantle thermal anomaly close to the ridge axis at the time of crustal formation. If so, the intracrustal structures observed may be representative of an atypical tectonic regime.  相似文献   

11.
Summary. A reflection survey across part of the southern North Sea has revealed SW-dipping bands of reflection segments in the midcrust under the edge of the London Platform. The upper limit of each group of reflection segments has been contoured in TWT to give a three dimensional impression of the shape of the features. The shape, position and orientation of these groups, together with the reflection character within each group, suggest that they represent large-scale extensional, probably dilatant shear zones. It is proposed that they developed at the edge of the North Sea Basin due to relative movement between an undeformed brittle upper crust and a more ductile lower crust which has been stretched towards the basin to the NE. The shears are thus caused by heterogeneous crustal stretching.  相似文献   

12.
Deep seismic reflection studies in Israel - an update   总被引:1,自引:0,他引:1  
Summary. The results of three deep crustal reflection lines are presently available from Israel. A 90 km line from near the Dead Sea rift to the Mediterranean coast was carried out for deep study. Two other lines in the Mediterranean coastal area were derived by recorrelation of oil exploration lines. The data shows a division between continental inner Israel and the coastal plain. In the first area a reflective lower crust is apparent with transparent upper crust and almost transparent upper mantle. Near the coast, in an area which was previously suggested as underlain by an ancient fossil oceanic crust, strong reflections characterize the uppermost mantle. Comparison between the reflection pattern and previous deep refraction and MT data indicates some agreement away from the coast and lack of correlation in the area of possible fossil oceanic crust near the coast.  相似文献   

13.
Summary. Within the framework of site survey studies of the Deep Drilling Program of the Fedral Republic of Germany (KTB), coincident deep-seismic reflection and refraction experiments in the Black Forest, southwest Germany, were carried out. The simultaneous interpretation of the reflection and the refraction data reveals in particular both a strong velocity reduction in the upper crust and a laterally varying laminated structure of the lower curst. Additional refraction lines result in a three-dimensional crustal model which shows two distinct crustal types of different seismic properties. These crustal types seem to correlate with the major geologic units of Southwest Germany. Variations of Poisson's ratio derived from clearly recorded shear wave data show a similar trend.  相似文献   

14.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

15.
Receiver functions (RFs) from teleseismic events recorded by the NARS-Baja array were used to map crustal thickness in the continental margins of the Gulf of California, a newly forming ocean basin. Although the upper crust is known to have split apart simultaneously along the entire length of the Gulf, little is known about the behaviour of the lower crust in this region. The RFs show clear P -to- S wave conversions from the Moho beneath the stations. The delay times between the direct P and P -to- S waves indicate thinner crust closer to the Gulf along the entire Baja California peninsula. The thinner crust is associated with the eastern Peninsular Ranges batholith (PRB). Crustal thickness is uncorrelated with topography in the PRB and the Moho is not flat, suggesting mantle compensation by a weaker than normal mantle based on seismological evidence. The approximately W–E shallowing in Moho depths is significant with extremes in crustal thickness of ∼21 and 37 km. Similar results have been obtained at the northern end of the Gulf by Lewis et al., who proposed a mechanism of lower crustal flow associated with rifting in the Gulf Extensional Province for thinning of the crust. Based on the amount of pre-Pliocene extension possible in the continental margins, if the lower crust did thin in concert with the upper crust, it is possible that the crust was thinned during the early stages of rifting before the opening of the ocean basin. In this case, we suggest that when breakup occurred, the lower crust in the margins of the Gulf was still behaving ductilely. Alternatively, the lower crust may have thinned after the Gulf opened. The implications of these mechanisms are discussed.  相似文献   

16.
Seismic amplitude tomography for crustal attenuation beneath China   总被引:1,自引:0,他引:1  
Amplitude tomography reconstructs seismic attenuation directly from recorded wave amplitudes. We have applied the tomography to amplitude data reported in the 'Annual Bulletin of Chinese Earthquakes' and interpreted the regionally varying crustal attenuation in terms of tectonics. The seismic amplitudes were originally recorded for determining the M L and M S magnitudes. They generally correspond to the maximum amplitudes of the horizontal components of the short-period S waves and intermediate-period Rayleigh waves. Both sets of measurements are sensitive to crustal structure. The peak amplitudes from M L amplitudes spread spherically with significant dispersion and scattering. M S amplitudes show cylindrical spreading with little dispersion. Average crustal Q values for attenuation at 1 Hz are 737 and 505 for M L and M S, respectively, with substantial regional variations. Frequency dependence in the attenuation is also indicated. Regions with the lowest attenuation (high Q values) are beneath the south China Block, Sichuan Basin, Ordos Platform, the Daxinganling and the Korea Craton. These tend to be tectonically inactive regions, which are generally dominated by intrusive and cratonic rocks in the upper crust. Regions with the highest attenuation (low Q values) are beneath Bohai Basin, Yunnan, eastern Songpan-Ganzi Terrain, margins of the Ordos platform and the Qilian Shan. These are predominantly active basins, grabens and fold belts. The continental margin also highly attenuates both S and surface waves.  相似文献   

17.
The results of deep reflection profiling studies carried out across the palaeo-meso-Proterozoic Delhi Fold Belt (DFB) and the Archaean Bhilwara Gneissic Complex (BGC) in the northwest Indian platform are discussed in this paper. This region is a zone of Proterozoic collision. The collision appears to be responsible for listric faults in the upper crust, which represent the boundaries of the Delhi exposures. In these blocks the lower crust appears to lie NW of the respective surface exposures and the reflectivity pattern does not correspond to the exposed blocks. A fairly reflective lower crust northwest of the DFB exposures appears to be the downward continuation of the DFB upper crust. The poorly reflective lower crust under the exposed DFB may be the westward extension of the BGC upper crust at depth. Thus, the lower crust in this region can be divided into the fairly reflective Marwar Basin (MB)-DFB crust and a poorly reflective BGC crust. Vertically oriented igneous intrusions may have disturbed the lamellar lower-crustal structure of the BGC, resulting in a dome-shaped poorly reflective lower crust whose base, not traceable in the reflection data, may have a maximum depth of about 50 km, as indicated by the gravity modelling.
The DFB appears to be a zone of thick (45-50 km) crust where the lower crust has doubled in width. This has resulted in three Moho reflection bands, two of which are dipping SE from 12.5 to 15.0 s two-way time (TWT) and from 14.5 to 16.0 s TWT. Another band of subhorizontal Moho reflections, at ≈ 12.5 s TWT, may have developed during the crustal perturbations related to a post-Delhi tectonic orogeny. The signatures of the Proterozoic collision, in the form of strong SE-dipping reflections in the lower crust and Moho, have been preserved in the DFB, indicating that the crust here has not undergone any significant ductile deformation since at least after the Delhi rifting event.  相似文献   

18.
Summary. The deep structure of the Faeroe–Shetland Channel has been investigated as part of the North Atlantic Seismic Project. Shot lines were fired along and across the axis of the Channel, with recording stations both at sea and on adjacent land areas. At 61°N, 1.7 km of Tertiary sediments overlies a 3.9–4.5 km s-1 basement interpreted as the top of early Tertiary volcanics. A main 6.0–6.6 km s-1 crustal refractor interpreted as old oceanic crust occurs at about 9 km depth. The Moho (8.0 ° 0.2 km s-1) is at about 15–17 km depth. There is evidence that P n may be anisotropic beneath the Faeroe–Shetland Channel. Arrivals recorded at land stations show characteristics best explained by scattering at an intervening boundary which may be the continent–ocean crustal contact or the edge of the volcanics.
The Moho delay times at the shot points, determined by time-term analysis, show considerable variation along the axis of the Channel. They correlate with the basement topography, and the greatest delays occur over the buried extension of the Faeroe Ridge at about 60° 15'N, where they are nearly 1 s more than the delays at 61°N after correction for the sediments. The large delays are attributed to thickening of the early Tertiary volcanic layer with isostatic downsagging of the underlying crust and uppermost mantle in response to the load, rather than to thickening of the main crustal ayer.
The new evidence is consistent with deeply buried oceanic crust beneath the Faeroe–Shetland Channel, forming a northern extension of Rockall Trough. The seabed morphology has been grossly modified by the thick and laterally variable pile of early Tertiary volcanic rocks which swamped the region, accounting for the anomalous shallow bathymetry, the transverse ridges and the present narrowness of the Channel.  相似文献   

19.
北冰洋地质构造及其演化   总被引:2,自引:0,他引:2       下载免费PDF全文
北冰洋及其周围的陆架海资源十分丰富,尤其是油气和煤炭。但受自然条件的限制,调查程度很低,许多地质与构造问题尚未解决。区域构造的认识主要依赖航磁测量结果。本文试图综合各国对北冰洋地区的研究现状,形成对该区地质构造及其演化的认识:1)欧亚海盆磁条带清晰,对海盆构造和演化历史认识争议最小,识别的最老磁条带为25,因此海盆大致于58Ma开始张开。磁条带13,之后,Yermak高地与莫里斯?杰塞普隆起分离,欧亚海盆与北大西洋连通。2)从地壳结构与地壳厚度,以及其它资料来看,阿尔法海岭-门捷列夫海岭与罗蒙诺索夫海岭一样,应为陆壳,可能是先后从巴伦支陆架裂离形成的。3)马卡罗夫海盆为典型的洋壳,其形成方式和时代还很少约束,其中观点之一是在晚赛诺曼期-早始新世,随阿尔法海岭-门捷列夫海岭裂离巴伦支陆架,海底扩张形成,并随Gakkel扩张中心在晚古新世的形成而逐步衰退。4) 加拿大海盆可能是北冰洋最早形成的海盆,其形成时间与机制至今仍所知甚少,但可能是从140~135Ma至95~80Ma,随新西伯利亚-楚科奇-阿拉斯加微板块旋转裂离加拿大北部陆缘形成。5)北冰洋的演化大致可以分为3个主要阶段:晚侏罗世-早白垩世、晚白垩世-新生代早期、新生代。第一阶段,加拿大海盆地的扩张中心形成、演化与消亡,第二阶段是拉布拉多-巴芬-马卡罗夫扩张中心的形成与演化,在始新世停止活动,第三阶段,极慢速的Mohna、Knipovich和Gakkel洋中脊的扩张,致使欧亚海盆形成。  相似文献   

20.
Summary. In 1985, near-vertical incidence reflection profiling was carried out across the Arunta Block in Central Australia. This region consists of exposed Proterozoic metasediments, granites and granulites. There is usually a limited sedimentary coverage generated by deep weathering. The seismic sections for the deep crust are markedly different from those previously recorded in Eastern Australia where there is extensive sedimentary cover. One of the striking features is the presence of energy with frequencies as high as 100 Hz at two-way times of 5-6 s. Reflections are found throughout the crust, and there is no zone that can be characterised as non-reflective. The strongest reflectors commonly lie in the intervals around 4-6 s and 8–11 s and display significant dip. Individual shot records show fairly rapid variations in amplitude and waveform within a reflection band and the correlation between records from adjacent shots can also be somewhat limited. Such features are not well suited to the application of standard processing techniques designed for subhorizontal structures, and call into question the utility of conventional stacking. The character of the reflections changes markedly with varying frequency which suggests that they arise by interference phenomena, probably associated with laterally varying lamellar structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号