首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The interpretation of metamorphically induced U-Pb isotopic discordance requires a thorough understanding of zircon-fluid interactions. With this aim we have studied the behaviour of metamict and crystalline zircon phases and their U-Pb systems by cathodoluminescence after treatment by 2M Na2CO3 solution at T = 200–800 °C and P = 1–5 kbar for 3–14 days, X-ray diffraction, microprobe and isotope dilution analysis. The data indicate that zircon transformation under hydrothermal conditions depends on the experimental conditions and the degree of structural damage. Reconstitution of defective and impurity-enriched zones of metamict zircon (homogenization of impure element concentrations and increase of crystallinity) was observed at 400 °C and P = 1 kbar. Considerable lead and uranium loss occurred under these conditions. As a result of zircon dissolution, newly formed baddeleyite accommodating U from 2M Na2CO3 solution and Zr-Na-silicate were recognized. This process intensified with increasing pressure. Study of crystalline zircon indicates that migration of U and Pb took place only during dissolution of zircon at T above 650 °C. In the presence of carbonate-ions essential U and Pb amounts are lost from metamict zircon at a lower P-T than is typical for greenschist facies metamorphism. Received: 4 October 1997 / Accepted: 6 December 1999  相似文献   

2.
We report a near-infrared Fourier-transform (FT) Raman spectroscopic method to characterize the electronic transitions of U ions and the alpha-decay damage in natural zircon. The application is demonstrated by analyzing metamict and annealed zircons from Sri Lanka. The data from crystalline zircon reveal a relatively sharp spectral feature appearing near 2733 cm–1 in Stokes spectra with a laser excitation of 1064 nm. The feature is assigned as signals related to the previously reported U5+ absorption near 6668 cm–1. With increasing self-irradiation dose, the feature shows a systematic decrease in intensity, accompanied by a gradual development of a broad feature between 3000 and 3400 cm–1. On heating for 1 h, the U5+ feature shows an increase in intensity starting near ~700 K for partially metamict zircon, whereas for highly damaged zircon the first recovery of the feature takes place near 1000 K, accompanied by a decrease in the radiation-induced broad band. The changes observed in the present study reflect the variations of local environments of U ions in natural zircon during metamictization and thermal annealing.  相似文献   

3.
 Raman spectroscopy and the powder diffraction technique have been used to monitor the recovery process of two partially metamict zircons (2.6 and 4.8 × 1018 α-decays g−1) from Sri Lanka during a series of isothermal annealing experiments in the temperature range from 870 to 1622 K. These experiments show for the first time that structural recovery in partially metamict zircon proceeds via three distinct recovery stages, each of which occurs within a distinct time-temperature regime. Whereas the first two stages have previously been recognized (recovery of damaged crystalline remnants and epitaxial recrystallization), the third stage has not yet been identified as a single activated process. It is suggested that anisotropic defect annealing during the first stage at low temperatures, where the structure recovers preferentially along the a(b) plane, produces a geometrical situation where large structural rearrangements are necessary to remove the remaining defects inside the crystalline material. This situation is approximately reached when the amorphous domains start to recrystallize. The reason for anisotropic annealing can be found in a different connectivity between polyhedral linkages in both directions of the zircon lattice. High apparent activation energies, in the range of 6.4 to 7.9 eV, were determined for the third recovery stage from the Raman data, which are interpreted to reflect large structural rearrangements (i.e. polyhedral tilting) associated with the final recovery of the c axis. This explains the occurrence of a distinct recrystallization stage without defect annealing. Finally, it should be mentioned that the first recovery stage is not necessarily expected to occur in less damaged zircon crystals (<∼2 × 1018 α-decays g−1), since less stable defects along the basal plane might have already been self-annealed during radiation damage accumulation under ambient temperatures. Received: 6 September 2001 / Accepted: 25 February 2002  相似文献   

4.
Samples of allanite and gadolinite with a range of alpha-recoil damage 0.1 to 3.0 dpa, were annealed in Ar and analysed by X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), infrared (IR) and differential thermal analysis (DTA). Samples that were fully metamict, and also amorphous regions of partially metamict samples, annealed according to the Ostwald step rule. After annealing, X-ray crystalline material still showed significantly damaged regions under transmission electron microscopy (TEM). Hydrothermal annealing of fully metamict gadolinite at 710° C and PH2O=2.3 kbar resulted in direct recrystallization. Direct recrystallization, by heterogeneous nucleation, occurred also in samples with significant amount of relict crystalline material. Of two exotherms observed on DTA curves for fully metamict gadolinite only one, at 840° C, resulted from recrystallization. The second exotherm at 895° C was related to the transformation of a transitional, high-temperature γ-phase into gadolinite. The activation energy of recrystallization of partially metamict gadolinite is 0.58 eV. The same annealing path for fully metamict gadolinite and for the amorphous component of partially metamict allanite is consistent with the model of an aperiodic random network structure of metamict minerals.  相似文献   

5.
Summary Mantle-derived xenoliths from Baarley in the Quaternary West Eifel volcanic field contain six distinct varieties of glass in veins, selvages and pools. 1) Silica-undersaturated glass rich in zoned clinopyroxene microlites that forms jackets around and veins within the xenoliths. This glass is compositionally similar to groundmass glass in the host basanite. 2) Silica-undersaturated alkaline glass that contains microlites of Cr-diopside, olivine and spinel associated with amphibole in peridotites. This glass locally contains corroded primary spinel and phlogopite. 3) Silica-undersaturated glass associated with diopside, spinel ± olivine and rh?nite microlites in partly to completely broken down amphibole grains in clinopyroxenites. 4) Silica-undersaturated to silica-saturated, potassic glass in microlite-rich fringes around phlogopite grains in peridotite. 5) Silica-undersaturated potassic glass in glimmerite xenoliths. 6) Silica-rich glass around partly dissolved orthopyroxene crystals in peridotites. Geothermometry of orthopyroxene–clinopyroxene pairs (P = 1.5 GPa) gives temperatures of ∼ 850 °C for unveined xenoliths to 950–1020 °C for veined xenoliths. Clinopyroxene – melt thermobarometry shows that Cr-diopside – type 2 glass pairs in harzburgite formed at 1.4 to 1.1 GPa and ∼ 1250 °C whereas Cr-diopside – type 2 glass pairs in wehrlite formed at 0.9 to 0.7 GPa and 1120–1200 °C. This bimodal distribution in pressure and temperature suggests that harzburgite xenoliths may have been entrained at greater depth than wehrlite xenoliths. Glass in the Baarley xenoliths has three different origins: infiltration of an early host melt different in composition from the erupted host basanite; partial melting of amphibole; reaction of either of these melts with xenolith minerals. The composition of type 1 glass suggests that jackets are accumulations of relatively evolved host magma. Mass balance modelling of the type 2 glass and its microlites indicates that it results from breakdown of disseminated amphibole and reaction of the melt with the surrounding xenolith minerals. Type 3 glass in clinopyroxenite xenoliths is the result of breakdown of amphibole at low pressure. Type 4 and 5 glass formed by reaction between phlogopite and type 2 melt or jacket melt. Type 6 glass associated with orthopyroxene is due to the incongruent dissolution of orthopyroxene by any of the above mentioned melts. Compositional gradients in xenolith olivine adjacent to type 2 glass pools and jacket glass can be modelled as Fe–Mg interdiffusion profiles that indicate melt – olivine contact times between 0.5 and 58 days. Together with the clinopyroxene – melt thermobarometry calculations these data suggest that the glass (melt) formed over a short time due to decompression melting of amphibole and infiltration of evolved host melt. None of the glass in these xenoliths can be directly related to metasomatism or any other process that occurred insitu in the mantle. Received November 23, 1999; revised version accepted September 5, 2001  相似文献   

6.
In the Itsaq Gneiss Complex south of the Isua supracrustal belt (West Greenland) some areas of early Archaean tonalite and quartz-diorite are non-gneissic, free of pegmatite veins, and in rarer cases are undeformed with relict igneous textures and hence were little modified by heterogeneous ductile deformation under amphibolite facies conditions in several Archaean events. Such well-preserved early Archaean rocks are extremely rare. Tonalites are high Al, and have bulk compositions close to experimental liquids. Trace element abundances and modelling suggest that they probably originated as melts derived from basaltic compositions at sufficiently high pressures to require residual garnet + amphibolites ± clinopyroxene in the source. The major element characteristics of the quartz-diorites suggest these were derived from more mafic magmas than the tonalites, and underwent either igneous differentiation or mixing with crustal material. As in modern arc magmas, high relative abundances of Sr, Ba, Pb, and alkali elements cannot be generated simply from a basaltic source formed by large degrees of melting of a depleted mantle. This may indicate an important role for fluids interacting with mafic rocks in generating the earliest preserved continental crust. The high Ba/Th, Ba/Nb, La/Nb and low Nb/Th, Ce/Pb, and Rb/Cs ratios of these tonalites are also observed in modern arc magmas. SHRIMP U-Pb zircon geochronology was undertaken on seven tonalites, one quartz-diorite, a thin pegmatitic vein and a thin diorite dyke. Cathodoluminescence images show the zircon populations of the quartz-diorite and tonalites are dominated by single-component oscillatory-zoned prismatic grains, which gave ages of 3806 ± 5 to 3818 ± 8 Ma (2σ) (quartz-diorite and 5 tonalites) and 3795 ± 3 Ma (1 tonalite). Dating of recrystallised domains cutting oscillatory-zoned zircon indicates disturbance as early as 3800–3780 Ma. There are rare ca. 3600 Ma and 3800–3780 Ma (very high U and low Th/U) ≤ 20 μm wide partial overgrowths on the prismatic grains. Given likely Zr-undersaturation of precursor melts and evidence of zircon recrystallisation and metamorphic regrowth as early as 3800–3780 Ma, the age determinations on the prismatic oscillatory-zoned zircon populations give the igneous crystallisation age of the tonalite and quartz-diorite protoliths. When the coherency of the geochemistry is considered, these samples represent the best preserved suites of ca. 3800 Ma felsic igneous rocks yet documented. Received: 1 December 1998 / Accepted: 23 July 1999  相似文献   

7.
High-temperature peridotite massifs occur as lensoid bodies with high-pressure granulites in the southern Bohemian massif. In lower Austria the peridotites comprise garnet lherzolites lacking primary spinel, rare garnet and garnet-spinel harzburgites, and harzburgites containing Cr-rich primary spinel instead of garnet. These phase assemblages suggest initial high-pressure equilibration and are consistent with results from garnet-orthopyroxene geobarometry indicating equilibration at around 3–3.5 GPa. Maximum temperature estimates obtained on core compositions of coexisting minerals from the peridotites are not higher than ca. 1100 °C. In contrast, pyroxene megacryst compositions, garnet exsolution textures in the garnet pyroxenites, and results from geothermometry indicate much higher original equilibration temperatures in most of the pyroxenites (up to 1400 °C). High temperatures, modal zoning, the occasional presence of Mg-rich garnetites and chemical evidence suggest that the pyroxenites are cumulates which crystallized from low-degree melts derived from the sub-lithospheric mantle. Isothermal interpolation of the high temperatures to an upper mantle adiabat suggests that the melts were derived from a minimum depth of 180–200 km. The formation of small garnet II grains and garnet exsolution lamellae in the pyroxenites and pyroxene megacrysts may reflect isobaric cooling of the cumulates from temperatures above 1400 °C to ca. 1100–1200 °C (at 3–3.5 GPa) to approach the ambient lithospheric isotherm. This model differs from other models in which the formation of garnet II was explained by an increase in pressure during cooling in a subduction zone. Isobaric cooling was followed by near-isothermal decompression from 3–3.5 GPa to 1.5–2 GPa at 1000–1200 °C, as indicated by the increase of Al in pyroxenes near garnet. Further cooling in the spinel lherzolite stability field is indicated by spinel exsolution lamellae in pyroxenes from lherzolites. The formation of symplectites and kelyphites indicate sub-millimetre scale re-equilibration during exhumation in the course of the Carboniferous collision in the Bohemian massif. The peridotite massifs represent fragments of normal (non-cratonic) lithospheric mantle from a Paleozoic convergent plate margin. Received: 22 July 1996 / Accepted 28 February 1997  相似文献   

8.
Summary Supra-solidus phase relations at temperatures and pressures ranging from 800 to 1700 °C and 2 to 6.4 GPa have been determined experimentally for three silica-rich lamproites: hyalo-leucite phlogopite lamproite (Oscar, West Kimberley); sanidine richterite lamproite (Cancarix, Murcia-Almeria); and phlogopite transitional madupitic lamproite (Middle Table Mountain, Wyoming). All samples have extended melting intervals (500–600 °C). Bulk composition has a significant control on the nature of the initial liquidus phases, with orthopyroxene occurring at low pressures (<4 GPa) in the relatively calcium-poor Oscar and Cancarix lamproites. At higher pressure (>6 GPa) orthopyroxene is replaced by garnet plus clinopyroxene as near-liquidus phases in the Oscar lamproite and by orthopyroxene plus clinopyroxene in the Cancarix sample. Clinopyroxene is a near-liquidus phase at all pressures in the Middle Table Mountain lamproite. Near-solidus phase assemblages at high pressure (>5 GPa) are: clinopyroxene + phlogopite + coesite + rutile + garnet (Oscar); clinopyroxene + garnet + coesite + K–Ti-silicate (Cancarix); clinopyroxene + phlogopite + apatite + K–Ti-silicate (Middle Table Mountain). In all compositions olivine is never found as a liquidus phase at any of the temperatures or pressures studied here. The phase relationships are interpreted to suggest that silica-rich lamproites cannot be derived by the partial melting of lherzolitic sources. Their genesis is considered to involve high degrees of partial melting of ancient metasomatic veins within a harzburgitic-lherzolitic lithospheric substrate mantle. The veins are considered in their mineralogy to be similar to the experimentally-observed, high pressure, near-solidus phase assemblages. The composition of silica-rich primary lamproite magmas differs between cratons as a consequence of differing mineralogical modes of the source veins and different relative contributions from the veins and wall-rocks to the partial melts. Received February 21, 2000; revised version accepted July 3, 2001  相似文献   

9.
The age and Precambrian history of the Moine Supergroup within the Caledonide belt of north-west Scotland have long been contentious issues. The Ardgour granite gneiss is essentially an in situ anatectic granite formed during deformation and regional high-grade metamorphism from Moine metasediments. High-precision TIMS and SHRIMP U-Pb zircon dating shows that the age of the anatectic Ardgour granite gneiss and its enclosed segregation pegmatites is 873 ± 7 Ma. This demonstrates the reality of a Neoproterozoic episode of high-grade metamorphism in the Glenfinnan Group Moine and, contrary to previous evidence, the absence of Grenvillian-aged metamorphism. This conclusion places constraints on Neoproterozoic palaeogeographic reconstructions of the North Atlantic region, indicating that the Moine rocks cannot be used as a link between the Grenvillian belt of North America and the Sveconorwegian orogen in Scandinavia. SHRIMP ages of between c. 1100 and 1900 Ma were obtained from detrital, inherited zircons and reflect the provenance of the Glenfinnan Group Moine sediments which must, therefore, have been deposited between c. 1100 and 870 Ma. Potential sources are found as relatively minor, tectonically bounded basement inliers within the British Caledonides, although more widespread source areas occur outside Britain in both Laurentia and Baltica. The most important feature of the provenance is the absence of detrital Archaean grains. This suggests that the Archaean Lewisian gneiss complex, which forms the basement component of the western foreland to the Caledonides in Britain, was not a major contributor to the Glenfinnan Group basin. Received: 16 June 1996 / Accepted: 29 January 1997  相似文献   

10.
Granulite-grade, anorthositic and mafic xenoliths recovered from a Jurassic kimberlite pipe near Kirkland Lake, Ontario are fragments of the lower crust that underlies the ca. 2.7 Ga Abitibi greenstone belt of the Superior craton. Cathodoluminescence imaging and/or backscatter electron microscopy of zircon from four individual xenoliths reveals a complex crystallization history, characterized by two main stages of zircon growth. The age of the two stages has been constrained by combining imaging results with isotope dilution U-Pb dating of grain fragments and single grains. Minimum ages for the first crystallization stage in individual xeno liths are 2584 ± 7 Ma, 2629 ± 8 Ma, 2633 ± 3 Ma, whereas an approximate crystallization age for a fourth sample is 2788 ± 57 Ma. The second main stage of growth consists of chemically and isotopically distinct metamorphic zircon overgrowths. Times of solid-state zircon growth are most broadly constrained in three samples to the interval between 2.52 Ga to 2.40 Ga, and most precisely dated in a meta-anorthosite at 2416 ± 30 Ma. These complex zircons are intergrown with garnet and clinopyroxene of the host granulite-facies assemblage, and thus the Paleoproterozoic ages of the metamorphic overgrowths are interpreted to reflect an interval of isobaric, granulite-grade metamorphism of the lower crust beneath the greenstone belt approximately 150 million years after craton formation. This interval of metamorphism is broadly coeval with the intrusion of the Matachewan dyke swarm across the southern Superior craton, and with mafic magmatism and deposition of Huronian rift-margin sediments 200 km to the south during the opening of the Matachewan ocean. It is proposed that a significant volume of magma intruded the crust-mantle interface during rifting, promoting isobaric metamorphism and zircon growth in the deep levels of the Superior craton. Subsequent major rifting events along this margin apparently failed to produce a similar lower crustal response. The results have important implications for the structure of lithosphere beneath Archean continental crust. Received: 3 October 1995 / Accepted: 11 February 1997  相似文献   

11.
Samples of the unshocked, equilibrated chondrite, Kernouve (H6), have been annealed for 1–100 hours at 500–1200°C, their thermoluminescence sensitivity measured and Na, K, Mn, Ca and Sc determined by instrumental neutron activation analysis. The TL sensitivity decreased with temperature until by 1000°C it had fallen by 40%. The process responsible has an activation energy of ~8 kcal/mole and probably involves diffusion. Samples annealed 1000–1200°C had TL sensitivities 10?2 times the unannealed values, most of the decrease occurring ~1100°C. This process has an activation energy of ~100 kcal/mole and is probably related to the melting of the TL phosphor, feldspar, with some decomposition and loss of Cs, Na and K. Meteorites whose petrography indicates healing > 1100°C by natural shock heating events (shock facies d-f). have TL sensitivities similar to samples annealed > 1100°C. Our own and literature compositional data indicate that TL is more stable to annealing than Ag, In, Tl, Bi, Zn and Te and less stable than Na, K, Mn, Ca, Se and Co, while the TL decrease resembles very closely the pattern of Cs loss on annealing.  相似文献   

12.
U–Pb baddeleyite geochronology has become a major tool for dating mafic rocks, especially dikes associated with Large Igneous Provinces. However, in many cases, post-crystallization Pb-loss and intergrowth of baddeleyite and zircon limit the precision and/or accuracy of crystallization ages. We present results from multi-step digestion experiments designed to understand and reduce these effects. Experiments were carried out on Neoproterozoic baddeleyites with zircon inter- and over-growths from the Gannakouriep dike swarm, Namibia, and on fragments of a large Paleoproterozoic baddeleyite from the Phalaborwa carbonatite, South Africa. Multi-step digestion experiments on annealed Phalaborwa baddeleyite were designed to test whether the recently developed chemical abrasion technique for U–Pb zircon geochronology can be applied to baddeleyite. The experiments generated complex results—individual digestion steps were both normally and reversely discordant suggesting that U and Pb were decoupled in the multi-step digestions—and indicate that the current form of multi-step chemical abrasion is not an effective method for reducing the impact of Pb-loss in baddeleyite. A separate set of experiments on the Gannakouriep baddeleyite focused on isolating the zircon and baddeleyite components in composite grains. Conventional single-step digestion experiments for this sample resulted in a discordant suite of analyses with significant scatter attributed to inter- and over-grown zircon and highlight the difficulty of obtaining precise and accurate ages from composite grains. To isolate the baddeleyite and zircon in these grains, a two-step HCl–HF chemical abrasion procedure for annealed grains was developed. This technique was successful at selectively dissolving the baddeleyite and zircon components. Secondary zircon inter- and over-growths of baddeleyite can occur in samples affected by low-temperature alteration to granulite facies metamorphism, and the new HCl–HF chemical abrasion procedure provides a method for resolving both the igneous and metamorphic history of these composite grains.  相似文献   

13.
The Jinchuan ultramafic intrusion in western China hosts the third-largest magmatic Ni–Cu deposit in the world. The crystallization age of the intrusion has long been debated. Here, we present a U–Pb ID-TIMS zircon age of 831.8 ± 0.6 Ma obtained on thermally annealed and chemically etched zircons from a lherzolite sample. The coexisting baddeleyite in the sample is indistinguishable from the age of zircon. Our new results confirm that the emplacement of the Jinchuan ultramafic intrusion was temporally related to the breakup of the Rodinia supercontinent.  相似文献   

14.
Grain growth kinetics in CaTiO3-perovskite + FeO-wüstite aggregates were studied at the conditions of T = 1223–1623 K, P = 0.1 MPa and P = 200 MPa. Starting samples were fabricated by hot-pressing mechanically mixed powders of CaTiO3 + FeO with FeO = 0%, 1%, 3%, 6%, 10%, 20% and 100% by weight in a gas-medium apparatus at 1323 K and 300 MPa for 5 h. The increase of grain size (G) of CaTiO3 with time (t) follows a growth law: G n G n 0 = κ·t(κ=κ0exp(−(Q/RT)). Two grain growth regimes are observed at T < 1523 K and T ≥ 1523 K. For T < 1523 K, the best fits of the data to the growth law yield growth exponents of n = 2.2 ± 0.2, 3.0 ± 0.3 and 3.5 ± 0.3 for samples with FeO = 0%, 3% and 10% respectively. Under these conditions the rate constants, κ, obey an Arrhenius relation with Q = 206 ± 35 kJ/mol and 385 ± 65 kJ/mol for samples with FeO = 3% and 10%. Grain growth of CaTiO3 becomes sluggish when FeO content exceeds 6%. For T ≥ 1523 K, the best fits of the data to the growth law yield n = 2.5 ± 0.2 for both samples with FeO = 3% and 10%. The activation energies (Q ) were determined as 71 ± 30 kJ/mol and 229 ± 45 kJ/mol for samples with FeO = 3% and 10%, respectively. The TEM observations show a remarkable difference in the distribution and geometry of FeO below and above 1523 K: nanometer-sized particles of FeO were observed along CaTiO3 grain boundaries in samples annealed at T < 1523 K. No FeO particles were detected along CaTiO3 grain boundaries in samples annealed at T ≥ 1523 K, but large clusters of FeO particles are observed locally indicating a fast separation of FeO from CaTiO3. Thus we conclude that the slow growth rate of CaTiO3 at T < 1523 K is due to the pinning by FeO particles at grain boundary, and that the change of grain growth kinetics in CaTiO3 at T ≥ 1523 K may relate to the separation of FeO from CaTiO3, which we interpret as due to the phase transformation of CaTiO3 at around 1523 K. Received: 19 June 1998 / Revised, accepted: 24 March 1999  相似文献   

15.
The granodiorite intrusion at Ocna de Fier-Dognecea in the western South Carpathians, Romania, triggered the formation of a classic Fe-(Pb-Zn) skarn deposit. The intrusive is related to the larger composite Bocşa Laccolith five kilometres north that is part of the regional Banatite Suite. Previous work indicated a K/Ar age of 65–57 Ma and postulated an Andean-type subduction related tectonic setting for the intrusions. We report ion probe U/Pb zircon ages of 79.6 ± 2.5 Ma for the Bocşa Laccolith and 75.5 ± 1.6 Ma for the Ocna de Fier Pluton, which date their emplacement. Fission track dating on titanite gives slightly younger ages: 78 ± 4 Ma for Bocşa and 73 ± 4 Ma for Ocna de Fier. Together with zircon and apatite data from the same samples, average cooling rates of 52 °C/Ma and 83 °C/Ma are calculated for the Bocşa and Ocna de Fier intrusives respectively. A post-collision tectonic setting is proposed on the basis of field evidence, the timing of intrusions in the context of regional tectonic evolution, and trace element geochemistry. Received: 4 August 1998 / Accepted: 20 April 1999  相似文献   

16.
Electron backscatter imaging, Raman spectroscopy and U-Pb geochronology have been applied to Precambrian zircon grains that were annealed at 1000 and 1450 °C for various times, then leached with HF to constrain the conditions for healing radiation damage and attaining primary U-Pb zircon ages using the chemical abrasion (CA-TIMS) method. SEM images reveal a variety of textures for ZrO2 overgrowths on 1450 °C annealed and leached zircon surfaces that depend on the degree of radiation damage and annealing history. Highly damaged zircon produces finer textures than zircon with less damage.Raman spectroscopy indicates that crystals with different levels of radiation damage are only partially restored by annealing at 1000 °C for 2-3 days. Longer annealing periods of 20 days are not noticeably more effective. Annealing at 1450 °C for 1 h results in partial breakdown of zircon but restores Raman peak widths and wave numbers to values characteristic of undamaged zircon after ZrO2 overgrowths are removed by HF. Raman spectra are much less sensitive to polarization angle for annealed highly damaged grains than for weakly damaged zircon.U-Pb isotopic analyses of low to moderately damaged zircon (alpha fluence ranging up to 1019/g corresponding to an amorphization volume fraction of 80% or more) yield almost concordant data (0.3-0.5% discordance) after high-temperature annealing at 1450 °C followed by HF leaching at 195 °C. Analyses of cracked zircon annealed at 1450 °C and leached may remain discordant but those of uncracked grains are concordant. Most analyses show primary 207Pb/206Pb ages although cracked grains annealed at 1450 °C may produce discordant data with 207Pb/206Pb ages that are too young after leaching. The solubility of highly damaged, very disordered zircon (amorphization level of 99%) is only slightly reduced by annealing, and analyses of leach residues are strongly discordant although primary 207Pb/206Pb ages are obtained.Annealing of highly damaged zircon under any conditions apparently results in a mass of randomly oriented micro-crystals that pseudomorph the original grain. This could explain the fine-scale pattern observed on etched crystal surfaces, reduced anisotropy at the 5 μm scale of the Raman laser beam and high solubility in HF. It may be impossible to restore primary U-Pb isotopic ages in such cases but precise ages can still potentially be determined from 207Pb/206Pb ratios or by application of the air abrasion method.  相似文献   

17.
Thermal history recorded by the Apollo 17 impact melt breccia 73217   总被引:1,自引:0,他引:1  
Lunar breccia 73217 is composed of plagioclase and pyroxene clasts originating from a single gabbronorite intrusion, mixed with a silica-rich glass interpreted to represent an impact melt. A study of accessory minerals in a thin section from this breccia (73217,52) identified three different types of zircon and anhedral grains of apatite which represent distinct generations of accessory phases and provide a unique opportunity to investigate the thermal history of the sample. Equant, anhedral zircon grains that probably formed in the gabbronorite, referred to as type-1, have consistent U-Pb ages of 4332 ± 7 Ma. A similar age of 4335 ± 5 Ma was obtained from acicular zircon (type-2) grains interpreted to have formed from impact melt. A polycrystalline zircon aggregate (type-3) occurs as a rim around a baddeleyite grain and has a much younger age of 3929 ± 10 Ma, similar to the 3936 ± 17 Ma age of apatite grains found in the thin section. A combined apatite-type-3 zircon age of 3934 ± 12 Ma is proposed as the age of the Serenitatis impact event and associated thermal pulse. X-ray mapping and electron probe analyses showed that Ti is inhomogeneous in the zircon grains on the sub-micrometer scale. However, model temperatures estimated from SHRIMP analyses of Ti-concentration in the 10 μm diameter spots on the polished surfaces of type-1 and type-2 zircons range between about 1300 and 900 °C respectively, whereas Ti-concentrations determined for the type-3 zircon are higher at about 1400-1500 °C. A combination of U-Pb ages, Ti-concentration data and detailed imaging and petrographic studies of the zircon grains shows that the gabbronorite parent of the zircon clasts formed shortly before the 4335 ± 5 Ma impact, which mixed the clasts and the felsic melt and projected the sample closer to the surface where fast cooling resulted in the crystallization of acicular zircon (type-2). The 3934 ± 12 Ma Serenitatis event resulted in partial remelting of the glass and formation of polycrystalline zircon (type-3). This event also reset the U-Pb system of apatite, formed merrillite coronas around some apatite grains, and probably re-equilibrated some pyroxenes in the clasts. Although there have been arguments for pre-3.9 Ga impacts based on other types of samples, the age of the acicular zircon at 4335 ± 5 Ma provides the first evidence of impact melt significantly predating the lunar cataclysm. Our data, combined with other chronological results, demonstrate the occurrence of pre-3.9 Ga impacts on the Moon and suggest that the lunar impact history consisted of a series of intense bombardment episodes interspersed with relatively calm periods of low impact flux.  相似文献   

18.
An ion-microprobe (SIMS) U-Pb zircon dating study on four samples of Precambrian metasediments from the high-grade Bamble Sector, southern Norway, gives the first information on the timing of discrete crust-forming events in the SW part of the Baltic Shield. Recent Nd and Pb studies have indicated that the sources of the clastic metasediments in this area have crustal histories extending back to 1.7 to 2.1 Ga, although there is no record of rocks older than 1.6 Ga in southern Norway. The analysed metasediments are from a sequence of intercalated, centimetre to 10-metre wide units of quartzites, semi-metapelites, metapelites and mafic granulites. The zircons can be grouped in two morphological populations: (1) long prismatic; (2) rounded, often flattened. The BSE images reveal that both populations consist of oscillatory zoned, rounded and corroded cores (detrital grains of magmatic origin), surrounded by homogeneous rims (metamorphic overgrowths). The detrital zircons have 207Pb/206Pb ages between 1367 and 1939 Ma, with frequency maxima in the range 1.85 to 1.70 Ga and 1.60 to 1.50 Ga. There is no correlation between crystal habit and age of the zircon. One resorbed, inner zircon core in a detrital grain is strongly discordant and gives a composite inner core-magmatic outer core 207Pb/206Pb age of 2383 Ma. Two discrete, unzoned zircons have 207Pb/206Pb ages of 1122 and 1133 Ma, representing zircon growth during the Sveconorwegian high-grade metamorphism. Also the μm wide overgrowths, embayments in the detrital cores and apparent “inner cores” which represent secondary metamorphic zircon growth in deep embayments in detrital grains, are of Sveconorwegian age. The composite-detrital-metamorphic zircon analyses give generally discordant 206Pb/238U versus 207Pb/235U ratios and maximum 207Pb/206Pb ages of 1438 Ma. These data demonstrate the existence of a protocrust of 1.7 to 2.0 Ga in the southwestern part of the Baltic Shield, implying a break in the overall westward younging trend of the Precambrian crust, inferred from the southeastern part of the Baltic Shield. Received: 8 April 1997 / Accepted: 14 July 1997  相似文献   

19.
Petrological and isotopic investigations were undertaken on high pressure granulites of granitic to mafic composition from the Prachatice and Blansky les granulite complexes of southern Bohemia, Czech Republic. The predominant felsic granulites are quartz + ternary feldspar (now mesoperthite)-rich rocks containing minor garnet, kyanite and rutile, and most show a characteristic mylonitic fabric formed during retrogression along the exhumation path. Three high temperature reaction stages at distinctly different pressures are recognized. Rare layers of intermediate to mafic composition, containing clinopyroxene, best record a primary high pressure–high temperature stage (>15 kbar, >900 °C), and a well-defined overprint at medium pressure granulite facies conditions (6–8 kbar, 700–800 °C) during which orthopyroxene (+plagioclase) formed from garnet and clinopyroxene. A further high temperature overprint at lower pressure (ca. 4 kbar) is reflected in the development of cordierite- and/or andalusite-bearing partial-melt patches in some felsic granulites. Conventionally separated zircons from the granulites were measured on a SHRIMP II ion microprobe. Near-spherical, multifaceted grains interpreted to be metamorphic, and short prismatic grains from the cordierite-bearing melt patch, are all concordant and yielded indistinguishable results producing an average age, for 83 individual grain spots, of 339.8 ± 2.6 Ma (2σ). Metamorphic grains from a meta-granodiorite associated with the granulites gave the same age (339.6 ± 3.1 Ma, mean of 9), whereas inherited magmatic grains of the same sample yielded 367.8 ± 1.4 Ma. A mean age of 469.3 ± 3.8 Ma was obtained for two short prismatic concordant grains in one of the granulites, whereas several of the rounded grains with ca. 340 Ma metamorphic zircon overgrowths had much older (207Pb/206Pb minimum ages up to 1771 Ma) discordant cores. In addition to analysis of conventionally separated grains, ion-microprobe measurements were also made on zircons extracted from thin sections (drilled-out, mounted and repolished) such that a direct relationship between the dated zircons and petrographic position could be made. Identical results were obtained from both preparation methods, thus showing that the considerable advantage in petrological control is not offset by any appreciable lack of precision when compared to conventionally prepared ion-microprobe samples. All these isotopic results are identical to those previously obtained by conventional multigrain and single-grain evaporation techniques, but rather than allowing a greater resolution of the age of the petrographically obvious different metamorphic stages the results document, for the first time, the apparent short time scale for high, medium and low pressure metamorphism in the granulites. The short time period between the 340 Ma age for the high pressure granulites, as derived here and from studies of similar rocks elsewhere in the European Variscides, and the 320–330 Ma ages for regional low pressure–high temperature metamorphism, migmatization and granite magmatism, strongly suggests an important link between these two high temperature processes. Received: 25 February 1999 / Accepted: 27 September 1999  相似文献   

20.
A temperature–time path was constructed for high-temperature low-pressure (HT–LP) migmatites of the Bayerische Wald, internal zone of the Variscan belt, Germany. The migmatites are characterised by prograde biotite dehydration melting, peak metamorphic conditions of approximately 850 °C and 0.5–0.7 GPa and retrograde melt crystallisation at 800 °C. The time-calibration of the pressure–temperature path is based on U–Pb dating of single zircon and monazite grains and titanite separates, on 40Ar/39Ar ages obtained by incremental heating experiments on hornblende separates, single grains of biotite and K-feldspar, and on 40Ar/39Ar spot fusion ages of biotite determined in situ from sample sections. Additionally, crude estimates of the duration of peak metamorphism were derived from garnet zoning patterns, suggesting that peak temperatures of 850 °C cannot have prevailed much longer than 2.5 Ma. The temperature–time paths obtained for two areas approximately 30 km apart do not differ from each other considerably. U–Pb zircon ages reflect crystallisation from melt at 850–800 °C at 323 Ma (southeastern area) and 326 Ma (northwestern area). The U–Pb ages of monazite mainly coincide with those from zircon but are complicated by variable degrees of inheritance. The preservation of inherited monazite and the presence of excess 206Pb resulting from the incorporation of excess 230Th in monazite formed during HT–LP metamorphism suggest that monazite ages in the migmatites of the Bayerische Wald reflect crystallisation from melt at 850–800 °C and persistence of older grains at these temperatures during a comparatively short thermal peak. The U–Pb ages of titanite (321 Ma) and 40Ar/39Ar ages of hornblende (322–316 Ma) and biotite (313–309 Ma) reflect cooling through the respective closure temperatures of approximately 700, 570–500 and 345–310 °C published in the literature. Most of the feldspars' ages (305–296 Ma) probably record cooling below 150–300 °C, while two grains most likely have higher closure temperatures. The temperature–time paths are characterised by a short thermal peak, by moderate average cooling rates and by a decrease in cooling rates from 100 °C/my at temperatures between 850–800 and 700 °C to 11–16 °C/my at temperatures down to 345–310 °C. Further cooling to feldspar closure for Ar was probably even slower. The lack of decompressional features, the moderate average cooling rates and the decline of cooling rates with time are not easily reconciled with a model of asthenospheric heating, rapid uplift and extension due to lithospheric delamination as proposed elsewhere. Instead, the high peak temperatures at comparatively shallow crustal levels along with the short thermal peak require external advective heating by hot mafic or ultramafic material. Received: 7 July 1999 / Accepted: 28 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号