首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The periodic solutions of the restricted three-body problem representing analytic continuations of Keplerian rectilinear periodic motions are well known (Kurcheeva, 1973). Here the stability of these solutions are examined by applying Poncaré's characteristic equation for periodic solutions. It is found that the isoperiodic solutions are stable and all other solutions are unstable.  相似文献   

2.
Yu-Qing Lou  Ren-Yu Hu   《New Astronomy》2010,15(2):198-214
We study the self-similar magnetohydrodynamics (MHD) of a quasi-spherical expanding void (viz. cavity or bubble) surrounding the centre of a self-gravitating gas sphere with a general polytropic equation of state. We show various analytic asymptotic solutions near the void boundary in different parameter regimes and obtain the corresponding void solutions by extensive numerical explorations. We find novel void solutions of zero density on the void boundary. These new void solutions exist only in a general polytropic gas and feature shell-type density profiles. These void solutions, if not encountering the magnetosonic critical curve (MCC), generally approach the asymptotic expansion solution far from the central void with a velocity proportional to radial distance. We identify and examine free-expansion solutions, Einstein–de Sitter expansion solutions, and thermal-expansion solutions in three different parameter regimes. Under certain conditions, void solutions may cross the MCC either smoothly or by MHD shocks, and then merge into asymptotic solutions with finite velocity and density far from the centre. Our general polytropic MHD void solutions provide physical insight for void evolution, and may have astrophysical applications such as massive star collapses and explosions, shell-type supernova remnants and hot bubbles in the interstellar and intergalactic media, and planetary nebulae.  相似文献   

3.
In this paper we obtain the general axially symmetric space-times in scalar-tensor theory of gravitation proposed by Sáez and Ballester. The only possible solutions of these space-times in this theory are dust solutions. One of the obtained solutions here has a similar considerations to Van Stockum dust solution. A detailed study of geometric and kinematical properties of the obtained solutions are carried out. Furthermore, closed timelike curves are present in these solutions.  相似文献   

4.
5.
Fourteen equilibrium solutions of the restricted problem of 2+2 bodies are shown to exist. Six of these solutions are located about the collinear Lagrangian points of the classical restricted problem of three bodies. Eight solutions are found in the neighborhood of the triangular Lagrangian points. Linear stability analysis reveals that all of the equilibrium solutions are unstable with the exception of four solutions; two in the vicinity of each of the triangular Lagrangian points. These four solutions are found to be stable provided the mass parameter of the primary masses is less than a critical value which depends also on the mass of the minor bodies.  相似文献   

6.
We explore semicomplete self-similar solutions for the polytropic gas dynamics involving self-gravity under spherical symmetry, examine behaviours of the sonic critical curve and present new asymptotic collapse solutions that describe 'quasi-static' asymptotic behaviours at small radii and large times. These new 'quasi-static' solutions with divergent mass density approaching the core can have self-similar oscillations. Earlier known solutions are summarized. Various semicomplete self-similar solutions involving such novel asymptotic solutions are constructed, either with or without a shock. In contexts of stellar core collapse and supernova explosion, a hydrodynamic model of a rebound shock initiated around the stellar degenerate core of a massive progenitor star is presented. With this dynamic model framework, we attempt to relate progenitor stars and the corresponding remnant compact stars: neutron stars, black holes and white dwarfs.  相似文献   

7.
Solution to steady-state, bigroup neutrino transport with isoenergetic and neutrino-electron scattering have been obtained for idealized conditions representative of the outer core or envelope of a star whose inner core is undergoing gravitational collapse. The solutions are presented in a form suitable for comparison with other numerical schemes. The incident neutrino distribution was chosen to be nonequilibrium, and the solutions clearly show the tendency of the neutrinos to equilibrate via neutrino-electron scattering as they propagate through the material. Care is taken to compare solutions obtained by two completely different techniques to ensure that the solutions presented here are accurate and error free. The solutions are compared with those obtained by a simple diffusion scheme, and by a flux limited diffusion scheme. The solutions given by the latter agree well with the solutions derived here, except when the neutrino angular distribution becomes oblate.  相似文献   

8.
Exact cosmological solutions of the vacuum Brans-Dicke field equations are derived. The solutions are the anisotropic generalizations of the isotropic de Sitter solutions of the general theory of relativity.  相似文献   

9.
Families of conditionally periodic solutions have been found by a slightly modified Lyapunov method of determining periodic solutions near the libration points of the restricted three-body problem. When the frequencies of free oscillations are commensurable, the solutions found are transformed into planar or spatial periodic solutions. The results are confirmed by numerically integrating the starting nonlinear differential equations of motion.  相似文献   

10.
A simple method of obtaining exact solutions in the scale-covariant theory of gravitation from the corresponding general relativistic solutions is presented. Some comments are made on some special scale-covariant solutions.  相似文献   

11.
给出了以偏近点角为自变量的变引力常数的摄动方程组的解.解包括轨道半长轴的长期和周期变化项,其他轨道根数在一阶解中无长期项,只有周期项.近星点经度和平经度在二阶解中显示长期项变化.给出了由于引力常数变化对双星轨道演变情况的数值估计,对结果做了讨论并给出结论.  相似文献   

12.
Perturbation solutions are obtained for the Lane–Emden equation of the second kind which describe Bonnor–Ebert gas spheres. In particular, we employ the field-theoretic perturbative procedure due to Bender et al. to obtain analytical solutions to the nonlinear initial value problem. We find that the method allows one to construct perturbation solutions which converge rapidly to the true solutions in many cases, as it allows one to more accurately represent the influence of nonlinear terms in the linearized equations. The rapid convergence of the method results in qualitatively accurate solutions in relatively few iterations.  相似文献   

13.
The oscillatory boundary layer past a porous flat plate for a two-component plasma is studied for the case of large suction. Perturbation series expansion solution is developed for the problem and the various approximate solutions are integrated in closed form. It is possible to obtain higher approximate solutions where steady state streaming solutions appear. These steady-state streaming solutions have generated a lot of mathematical and physiological interest in recent times.  相似文献   

14.
Two basic problems of dynamics, one of which was tackled in the extensive work of Z. Kopal (see e.g. Kopal, 1978, Dynamics of Close Binary Systems, D. Reidel Publication, Dordrecht, Holland.), are presented with their approximate general solutions. The ‘penetration’ into the space of solution of these non-integrable autonomous and conservative systems is achieved by application of ‘The Last Geometric Theorem of Poincaré’ (Birkhoff, 1913, Am. Math. Soc. (rev. edn. 1966)) and the calculation of sub-sets of ‘solutions précieuses’ that are covering densely the spaces of all solutions (non-periodic and periodic) of these problems. The treated problems are: 1. The two-dimensional Duffing problem, 2. The restricted problem around the Roche limit. The approximate general solutions are developed by applying known techniques by means of which all solutions re-entering after one, two, three, etc, revolutions are, first, located and then calculated with precision. The properties of these general solutions, such as the morphology of their constituent periodic solutions and their stability for both problems are discussed. Calculations of Poincaré sections verify the presence of chaos, but this does not bear on the computability of the general solutions of the problems treated. The procedure applied seems efficient and sufficient for developing approximate general solutions of conservative and autonomous dynamical systems that fulfil the PoincaréBirkhoff theorems. The same procedure does not apply to the sub-set of unbounded solutions of these problems.  相似文献   

15.
We introduce a multipolar scheme for describing the structure of stationary, axisymmetric, force-free black hole magnetospheres in the '3+1' formalism. We focus here on Schwarzschild spacetime, giving a complete classification of the separable solutions of the stream equation. We show a transparent term-by-term analogy of our solutions with the familiar multipoles of flat-space electrodynamics. We discuss electrodynamic processes around disc-fed black holes in which our solutions find natural applications: (i) 'interior' solutions in studies of the BlandfordZnajek process of extracting the rotational energy of holes, and of the formation of relativistic jets in active galactic nuclei and 'microquasars'; (ii) 'exterior' solutions in studies of accretion disc dynamos, disc-driven winds and jets. On the strength of existing numerical studies, we argue that the poloidal field structures found here are also expected to hold with good accuracy for rotating black holes, except for the cases of the maximum possible rotation rates. We show that the closed-loop exterior solutions found here are not in contradiction with the MacdonaldThorne theorem, as these solutions, which diverge logarithmically on the horizon of the hole , only apply to those regions that exclude .  相似文献   

16.
Similarity solutions are obtained for spherical radiation-driven shock waves propagating in a non-uniform atmosphere at rest obeying a density power law. Approximate analytical solutions are also obtained and found to be in good agreement with the numerical solutions. The effect of the parameter characterizing the initial density distribution of the gas on solutions of the flow field is studied in detail. It is also shown analytically that the shock wave propagates as an overdriven detonation.  相似文献   

17.
R. E. Grundy 《Solar physics》1975,40(1):227-230
This paper deals with shock conditions for the progressing wave (or similarity) solutions of one-dimensional, unsteady gas dynamics. These solutions have hitherto been used to deal with the flow behind shocks moving into stationary atmospheres. By generalising the shock conditions to the case of moving atmospheres, it is shown that the progressing wave solutions can be used to describe a certain class of flows, and a new shock locus can be constructed in the phase plane of the solutions. It is hoped that such solutions will be of use in describing the unsteady flow behind shocks propagating into the ambient solar wind.  相似文献   

18.
Exact static, spherically symmetric solutions to the Einstein-Maxwell-scalar equations, with a dilatonic-type scalar-vector coupling, in D-dimensional gravity with a chain of n Ricci-flat internal spaces are considered. Their properties and special cases are discussed. A family of multidimensional dilatonic black-hole solutions is singled out, depending on two integration constants (related to black hole mass and charge) and three free parameters of the theory (the coordinate sphere, internal space dimensions, and the coupling constant). The behaviour of the solutions under small perturbations preserving spherical symmetry, is studied. It is shown that the black-hole solutions without a dilaton field are stable, while other solutions, possessing naked singularities, are catastrophically unstable.  相似文献   

19.
We develop a method for constructing exact cosmological solutions in brane world cosmology. New classes of cosmological solutions on Randall–Sandrum brane are obtained. The superpotential and Hubble parameter are represented in quadratures. These solutions have inflationary phases under general assumptions and also describe an exit from the inflationary phase without a fine tuning of the parameters. Another class solutions can describe the current phase of accelerated expansion with or without possible exit from it.  相似文献   

20.
We continue to analyze the periodic solutions of the singly averaged Hill problem. We have numerically constructed the families of solutions that correspond to periodically evolving satellite orbits for arbitrary initial values of their eccentricities and inclinations to the plane of motion of the perturbing body. The solutions obtained are compared with the numerical solutions of the rigorous (nonaveraged) equations of the restricted circular three-body problem. In particular, we have constructed a periodically evolving orbit for which the well-known Lidov-Kozai mechanism manifests itself, just as in the doubly averaged problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号