首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversion factor for specific rates of breakage, to change from results in a 200-mm diameter laboratory mill with 25.4-mm diameter balls, at Bond filling conditions, to a 4-m diameter production cement mill was found to be 2.75. The residence time distribution of the 10-m long, 2-compartment production mill was equivalent to 10 equal fully-mixed reactors in series, with a mean overall residence time of 5.58 min. A mathematical simulation of the mill circuit using experimental separator selectivity values gave a reasonably close match between simulated and experimental size distributions at various points in the circuit.The steady-state simulation model was used to predict how design schemes for different operation conditions would influence the product size distributions and output rates, assuming that the discharge diaphragm could be redesigned to preserve design mill filling conditions at different circulating loads. It was concluded that the increase of circuit output from the breakage view-point due to separation and rejects recycle was slight, and that improved separator efficiency to produce the same product would not result in significant increase in output, primarily because the size distribution of the finish product is close to that predicted from open-circuit operation.  相似文献   

2.
This paper presents a three dimensional Computational Fluid Dynamics (CFD) model to investigate the flow dynamics of solid–gas phases during fine grinding in an air jet mill. Alpine 100AFG fluidized bed air jet mill is considered for the study and the jet milling model is simulated using FLUENT 6.3.2 using a standard k-ε model. The model is developed in GAMBIT 2.3.16 and meshed by tet/hybrid (T-Grid) and Triangular (Pave) meshes. The effects of operating parameters such as solid feed rate, grinding air pressure and internal classifier speed on the performance of the jet mill are analyzed. The CFD simulation results are presented in the forms of dual phase vector plot, volume fraction of phases and particle trajectories during fine grinding process. The mass of ground feed entering and leaving the cyclone (underflow) is also computed by simulation. The proposed model gives realistic predictions of the flow dynamics within the jet mill. Experiments are conducted on the Alpine 100AFG jet mill to study the particle size, morphology and mass of the ground product. The numerical results are found in good agreement with the experimental results.  相似文献   

3.
A size-continuous breakage-kinetics model is postulated and supported with industrial grinding-mill data. It is shown that the kinetics parameters include the effects of possible classification at the mill discharge. The estimated parameters were then used in the kinetics model to simulate the behavior of a grinding mill in open- and closed-circuit operation. While material transport and kinetics are equally important in open-circuit operation, heavy recycle in a closed circuit makes a detailed material-transport model for grinding unnecessary. In effect, the mill can be considered as backmixed. This suggests that more emphasis should be placed on modelling the classifier than the development of detailed material-transport models for the grinding mill.  相似文献   

4.
The performance of the secondary ball mill at the New Broken Hill Consolidated Ltd. concentrator is analysed using the perfect mixing model and an ore-specific breakage distribution function. This function was determined from single-particle breakage tests using a computer-monitored twin pendulum apparatus.The ratio of the breakage rate to the normalized discharge rate, r/d*, determined for the ball mill using the ore-specific breakage distribution function for a range of grinding conditions is related to the mill power consumption. The mill power consumption is related to the percentage of mill volume occupied by the ball charge and to the percentage of solids in the mill feed.  相似文献   

5.
Hematite concentrate was mechanically treated using different milling machines and experimental conditions in air atmosphere. The changes in phase constitution, particles size, specific surface area, lattice parameters and X-ray amorphous phase fraction of activated hematite were determined. It was found that the agglomeration of the particles take place during extended milling with accessible pores for Nitrogen gas. The higher media surface brought about the largest specific surface area whatever milling devices used. After 9 h of grinding with higher media surface, the maximum and minimum specific surface area resulted from the grinding in the tumbling and vibratory mills, accounting for 6.83 m2/g and 18.42 m2/g, respectively. For the same grinding condition, tumbling mill produced the lowest X-ray amorphous phase. The maximum X-ray amorphous material estimated around 85% from the grinding in the planetary mill with higher media surface for 9 h of milling.  相似文献   

6.
After a summary of maximum likelihood (ML) estimation, the application of the ML-method is demonstrated by estimating parameters in a ball mill-hydrocyclone grinding circuit from flow and density measurements. The model with the estimated parameters is used to determine the time propagation of mill contents and size distribution.  相似文献   

7.
The work presents a theoretical and experimental assessment of the mechanical power absorption by a prototype horizontal ring mill, during the continuous comminution of olivine with feed rates for a wide range of operating conditions. The forces acting on a ring element of a prototype ring mill under continuous operating conditions have been theoretically calculated and it has been experimentally confirmed that they are proportional to the square of the rotational speed. A linear variation of power with feed rate has been established and a functional relationship between consumed power and rotational speed is also proposed. Results demonstrate that there exists a feed rate for which the value of the friction coefficient between the rings and the powdered material is minimized, independently of the rotational speed. It was further found that the product size depends on the absorbed mechanical power and it decreases with increasing power values.  相似文献   

8.
Ball milling is an energy-intensive unit operation and usually consumes a major proportion of the power drawn by a typical mineral processing plant. Hence, substantial economic benefits can be achieved by optimal design and by operating ball milling circuits under optimum process conditions. This requires an accurate ball mill modelling technique.In the multi-segment ball mill model, the size-dependent material transport within the mill varies systematically with the amount of coarse particles present in each segment. The ore-specific breakage distribution function can be determined from single particle breakage tests conducted using a computer-monitored twin pendulum apparatus. When the ore-specific breakage distribution function is used in the multi-segment, a constant relationship between the breakage rate parameters and mill diameter is observed. Thus, the performance of an industrial ball mill can be adequately described using the ore-specific breakage distribution function together with the systematic variation of the material transport and the breakage rate functions with process conditions and mill diameter, respectively.This ball mill modelling technique is illustrated using a case study on the design of a ball milling circuit for a particular grinding requirement and another case study on modelling the performance of an industrial ball milling circuit.  相似文献   

9.
This paper presents the experimental results of the mechanical production of silica and carbonate colloidal particles below 100 nm using two types of stirred bead mills (i.e., DCP Superflow 12 and PML H/V). It is shown that the stirred bead mill with very small beads can be used as an efficient equipment for the production of the colloidal particles in nanoscale from the feed materials of several microns in sizes at high energy consumptions. The DCP Superflow mill with high power densities is superior for the effective size reduction and production rate, compared to the conventional PML H/V mill with lower power densities. The smaller particles could be produced by the DCP Superflow mill at the same level of high energy inputs as from the PML H/V mill. The “grinding limit” for the processes in the mills has been discussed.  相似文献   

10.
Grinding mills are commonly used in the Florida phosphate industry to reduce particle size. The corrosion of metallic grinding media and mill liner is a very serious problem, particularly under acidic conditions as encountered in the Florida phosphate fertilizer industry. A statistical Box–Behnken Design (BBD) of experiments was performed to evaluate the effects of individual operating variables and their interactions on the wear rate of high chromium alloy during phosphate grinding. The variables examined in this study included grinding time, solution pH, rotation speed, mill crop load, and solids percentage. The wear tests were conducted using a specially designed grinding mill whose electrochemical potential can be controlled. The most significant variables and optimum conditions were identified from statistical analysis of the experimental results using response surface methodology (RSM). It has been shown that solution pH had the most significant effect on the wear rate. The optimum process parameters for minimum wear rate were solution pH at 8.7, rotation speed at 61 rpm, solid percentage at 65% and crop load at 58%.  相似文献   

11.
In this study, a naturally available crab shell chitosan of low molecular weight (20?kDa) has been used as adsorbent to evaluate the pollution load in vegetable oil mill effluent. A series of batch experiment was conducted by varying chitosan dosage (100?C400?mg), pH (2?C9), stirring time (15?C90)?min and agitation speed (25?C150?rpm) to study their effects on adsorption and flocculation processes. The parameters considered for adsorption study are chemical oxygen demand, total suspended solids, electrical conductivity and turbidity. The maximum reduction in chemical oxygen demand, total suspended solids, electrical conductivity and turbidity is 74, 70, 56 and 92?% , respectively. The observed experimental result showed that crab shell chitosan could able to reduce significantly the chemical oxygen demand, turbidity, electrical conductivity and suspended matter. The optimum conditions were estimated as 400?mg/l chitosan, pH 4 and 45?min of mixing time with mixing speed of 50?rpm. Chitosan showed very good pollution removal efficiency and can be used for the effective treatment of vegetable oil mill effluent.  相似文献   

12.
镁铝榴石中的结构水的研究   总被引:2,自引:0,他引:2  
通过对34个取自金伯利岩管中的粗晶镁铝榴石及碱性玄武岩中镁铝榴石巨晶样品的红外光谱分析发现,金伯利岩中部分镁铝榴石粗晶含有结构水,但不同颗粒之间含量差异很大,含量较高者约0.07wt%,而所研究的碱性玄武岩中的镁铝榴石不含结构水。分析发现,结构水在同一样品内分布基本均匀。在红外光谱3800—3500cm~(-1)波长范围内,分别记录到三峰谱和单峰谱两种类型,其中位于3570cm~(-1)±的吸收峰峰位明显受镁铝榴石结构中八配位阳离子(Mg~(2+)、Fe~(2+))影响,而六配位阳离子(Cr~(3+)、Al~(3+))的影响不明显。结构水在镁铝榴石晶格中的存在形式是多样的。  相似文献   

13.
Biofiltration has shown to be a promising technique for handling malodours arising from process industries. The present investigation pertains to the removal of hydrogen sulphide in a lab scale biofilter packed with biomedia, encapsulated by sodium alginate and poly vinyl alcohol. The experimental data obtained under both steady state and shock loaded conditions were modelled using the basic principles of artificial neural networks. Artificial neural networks are powerful data driven modelling tools which has the potential to approximate and interpret complex input/output relationships based on the given sets of data matrix. A predictive computerised approach has been proposed to predict the performance parameters namely, removal efficiency and elimination capacity using inlet concentration, loading rate, flow rate and pressure drop as the input parameters to the artificial neural network model. Earlier, experiments from continuous operation in the biofilter showed removal efficiencies from 50 to 100 % at inlet loading rates varying up to 13 g H2S/m3h. The internal network parameter of the artificial neural network model during simulation was selected using the 2k factorial design and the best network topology for the model was thus estimated. The results showed that a multilayer network (4-4-2) with a back propagation algorithm was able to predict biofilter performance effectively with R2 values of 0.9157 and 0.9965 for removal efficiency and elimination capacity in the test data. The proposed artificial neural network model for biofilter operation could be used as a potential alternative for knowledge based models through proper training and testing of the state variables.  相似文献   

14.
This study presents the mineralogical and geochemical characteristics of tailing dumps at the Krasnorechenskaya concentration mill (Primorskii krai, Russia). Primary ore minerals and newly forming mineral assemblages were also investigated. According to the obtained data, the possible reserves of the major elements accumulated in these tailings were estimated. It was shown that the tailing dumps at the Krasnorechenskaya concentration mill are potentially promising for secondary recovery. The tailing sediment has natural geochemical stratification and the specific correlations of elements are typical for each selected layer.  相似文献   

15.
方啸虎  洪涛 《探矿工程》2004,31(3):49-52
中国经过40年超硬材料艰辛的研发历程,现在全国超硬材料已由开始的研制开发,发展成今日的超硬材料行业,年产量已达20亿ct以上(还有信息说达25亿ct左右)。它已是国民经济发展高新技术产业不可缺少的重要组成部分。同样在发展探矿工程、岩土工程及多种金刚石钻探、多种特种钻探方面,也是无可替代的重要磨料,这方面的信息对我们指导发展近代探矿工程、岩土工程是有意义的。  相似文献   

16.
气候变化对京津唐地区水资源及供需平衡的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
根据大气环流模型(GCMs)输出的未来气候变化情景,结合历史资料的诊断分析,应用建立的流域水文模型及水资源利用综合评价模型,研究了气候变化对京津唐地区水资源数量和时空变化的影响。在地区未来经济发展及部门用水量预测的基础上,分析了气候变化对供水、需水和部门缺水的影响以及经济损失。  相似文献   

17.
High levels of fluoride concentration were observed in deep groundwater of the Mizunami area in Central Japan. Fluoride occurs mainly due to the reaction between granitic basement rock and groundwater. Granites were collected, crushed to powder, and then allowed to react with purified water for 80 days. Water–rock interaction results showed that the major factor affecting fluoride concentration is the residence time of the groundwater. Coexisting ions have also some contribution toward fluoride concentration. The groundwater residence time in the Mizunami area was estimated by applying results of water–rock interaction to correspond with field data. A regression model relating fluoride concentration, residence time, and coexisting ions was developed. The parameters of the regression model were determined using the genetic algorithms technique. Residence time was estimated by extrapolating experimental data to correspond with filed data. Near the recharge area, residence times in the potential fluoride source rock varied between 1 and 2,000 years, whereas near the discharge area residence times were in excess of tens of thousands of years. The groundwater residence time was also estimated by the groundwater particle-tracking-flow model. The estimates of groundwater residence time based on geochemical regression model were often larger than estimates of groundwater residence time developed by particle-tracking analysis using a groundwater flow model. There were large uncertainties—on the order of 10–10,000 years—in the estimates based on geochemical data.  相似文献   

18.
The fraction of solid tracer retained in a laboratory flotation machine is measured as a function of time, simulating semi-batch testing. Observed departures from ideal mixing in which the ratio mean retention time/mean residence time exceeds unity can be accounted for by a recycle model of pulp circulation around the impeller region.Solutions of the system differential equations are recast into forms allowing calculation of the system parameters from the retention time ratio and an initial value, both obtained from tracer experiment data. The effect of changing the parameter values on the model response is discussed. Some special cases, applications, and alternative models are mentioned, and an example is provided.The effects of experimental error on estimated parameter values, and relationships between tracer concentration in the exit stream and the fraction retained formulations, are discussed in appendices.  相似文献   

19.
The water and energy transfer of land surface is complex due to its large spatial and temporal variability. The modeling and simulation is an important means to study land water and energy transfer, but most selection and analysis of model parameters are empirical and qualitative. This paper has proposed a method of quantitatively identifying the most influential parameters of Common Land Model through Sobol?? sensitivity analysis. Considering sensible heat flux as the model output, the first order and total sensitivity indices of 25 model input parameters are estimated using an improved Sobol?? method. The simulated results are resampled using a bootstrapping method and the corresponding sensitivity indices are calculated. Confidence intervals for the bootstrapping sensitivity indices are estimated by using a percentile method. The results show that the parameters phi0 and porsl are the most important parameters, followed by ref(2,1), tran(2,1) and bsw. Five out of 25 parameters need to have an accurate evaluation, while the other parameters are fixed to a certain value. The sensitivity indices of parameters phi0 and porsl are decreasing after precipitation, while the sensitivity indices of parameters tran(2, 1) and ref(2, 1) are increasing after precipitation.  相似文献   

20.
The use of digital models has increased significantly in recent years with the accessibility of fast computing machines. A variable dimensioned digital model was constructed for the Shadnagar granite basin using SPECTRUM-7 micro computer to integrate various hydrogeological characteristics and for their quantitative evaluation. The basin has an areal extent of 437 sq km and is demarcated with clear water divides in all directions. Transmissivity, recharge and discharge at each cell of the basin area were estimated by trial and error simulation of the hydrogeological phenomenon under steady state condition. Dynamic simulation at representative nodes facilitated the estimation of storage coefficient. The capability of the constructed model was established by the conformance of the simulated hydrographs with the actual behaviour of the ground water system. The entire studies ammended the earlier arrived estimates of various input/output hydrogeological parameters and evolved a methodology for efficient processing of aquifer simulation data  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号