首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the area surrounding the El Teniente giant porphyry copper deposit, eight soil sites were sampled at three depth levels in the summer 2004. The sites were selected for their theoretical potential of being influenced by past SO2 emissions from the smelter and/or seepage from a now idle tailings impoundment. The soil mineralogy, grain size distribution, total organic matter contents, major element composition, cation exchange capacity, and Cu, Mo, Pb, Zn, As and SO4 2− concentrations were determined for all samples after nitric acid extraction and separate leaches by ammonium acetate (pH 7) and sodium acetate (pH 5). For water rinses, only Cu could be determined with the analytical set-up used. Cu and SO4 2− enrichment in topsoils was found at six sites either downwind from the smelter or within the combined influence of the smelter and the tailings impoundment. Both elements were released partially by ammonium and sodium acetate extractions. Due to the scarce background trace element concentrations of soil and rock outside the immediate mine area, assessment of trace element mobility for Mo, Zn, Pb and As was difficult. Arsenic was found to be concentrated in soil horizons with high smectite and/or organic matter contents. Mo appears to be linked to the presence of windblown tailings sediment in the soils. Mobilization of Mo, Zn, and As for the acetate extractions was minimal or below the detection limits for the AAS technique used. The presence of windblown tailings is considered to be an additional impact on the soils in the foothills of the El Teniente compound, together with the potential of acidity surges and Cu mobilization in topsoils after rainfalls. Two sites located at the western limit of the former SO2 saturated zone with strongly zeolitized soils and underlying rock did not show any Cu or SO4 2− enrichment in the topsoils, and remaining total trace element concentrations were below the known regional background levels.  相似文献   

2.
Mine tailings may be remediated using metal tolerant microorganisms as they may solve the limiting conditions for healthy development of plants (i.e., low organic mater content and poor physical conditions). The aim of this study was to investigate the consequences of microbial colonization on the chemical speciation of trace metals. Surface samples from the Valenciana mine tailings (Guanajuato, Mexico) were used for long-term bioassays (BA), which consisted in the promotion of microorganisms, development on tailings material under stable laboratory conditions (humidity, temperature, and light exposure). A five-step sequential extraction method (exchangeable, carbonate/specifically adsorbed, Fe–Mn oxides, organic matter (OM)/sulfide, and residual fractions) was performed before and after BA. Extraction solutions and leachates were analyzed by inductively coupled plasma-mass spectrometry. OM content, cationic exchange capacity, and pH values were also assessed before and after BA. The results indicate that trace elements are generally present in nonresidual fractions, mainly in the Fe–Mn oxides fraction. The concentration of total Zn, As, Se, Pb, and exchangeable Cu and Pb is above the recommendable limits for soils. Despite the high bioavailability of the former elements, biofilms successfully colonized the tailing samples during the BA. Cyanobacteria and green algae, heterotrophic fungi, aerobic bacteria, and anaerobic bacteria composed the developed biofilms. Chemical controls of trace elements could be attributed to absorption onto inorganic complexes (carbonates, metal oxides), while biofilm occurrence seems to enhance complexation and immobilization of Cr, Ni, Cu, Zn, As, and Pb. The biofilm developed does not increase the bioavailable forms and the leaching of the trace elements, but significantly improves the OM contents (natural fertilization). The results suggest that biofilms are useful during the first steps of the mine tailings remediation.  相似文献   

3.
Heavy metal contamination was the main environmental problem around the Jinchang Ni–Cu mine area of Gansu, Northwest China. The concentration of heavy metals (Cr, Cu, Ni, Pb, and Zn) in various environmental mediums around the Jinchang Ni–Cu mine area were analyzed using atomic absorption spectrometry (AAS). The different chemical speciation of heavy metals was extracted using BCR (European Community Bureau of Reference) sequential extraction procedure, and the concentration of chemical speciation of each heavy metal was measured by inductively coupled plasma-atomic emission spectrometry. The results showed that Cu and Ni were the most important heavy metal pollutants in various mediums including cultivated soils, dust on slagheap surfaces, tailings, and sediments in waste water drains. In the tailings and sediments, the concentrations of Ni were obviously higher than those of Cu, whereas, in the soil and dust, the concentrations of Cu were higher than those of Ni. Analysis of chemical speciation indicated that Cr and Zn were mainly in residual fraction; Cu was mainly in oxidizable fraction; Ni was mainly in reducible fraction and acid soluble fraction; and Pb was mainly in reducible fraction and residual fraction. The extent of contamination of various environmental mediums was different because the heavy metals were derived from different sources. Furthermore, the mobility of various heavy metals was different because of the different distribution of chemical speciation.  相似文献   

4.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   

5.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

6.
Mining and milling of base metal ore deposits can result in the release of metals to the environment. When sulfide minerals contained in mine tailings are exposed to oxygen and water, they oxidize and dissolve. Two principal antagonistic geochemical processes affect the migration of dissolved metals in tailings impoundments: sulfide oxidation and acid neutralization. This study focuses on acid neutralization reactions occurring in the saturated zone of tailings impoundments. To simulate conditions prevailing in many tailings impoundments, 0.1 mol/L sulfuric acid was passed continuously through columns containing fresh, unoxidized tailings, collected at Kidd Creek metallurgical site. The results of this column experiment represent a detailed temporal observation of pH, Eh, and metal concentrations. The results are consistent with previous field observations, which suggest that a series of mineral dissolution-precipitation reactions control pH and metal mobility. Typically, the series consists of carbonate minerals, Al and Fe(III) hydroxides, and aluminosilicates. In the case of Kidd Creek tailings, the dissolution series consists of ankerite-dolomite, siderite, gibbsite, and aluminosilicates. In the column experiment, three distinct pH plateaus were observed: 5.7, 4.0, and 1.3. The releases of trace elements such as Cd, Co, Cr, Cu, Li, Ni, Pb, V, and Zn were observed to be related to the pH buffering zones. High concentrations of Zn, Ni, and Co were observed at the first pH plateau (pH 5.7), whereas Cd, Cr, Pb, As, V, and Al were released as the pH of the pore water decreased to 4.0 or less.  相似文献   

7.
The Mike Horse Mine tailings dam in western Montana was partially breached in 1975 due to heavy rainfall and a failed drainage bypass. Approximately 90,000 tons of metal and arsenic-enriched tailings flowed into Beartrap Creek and the Blackfoot River. The spatial distribution of trace elements As, Cd, Cu, Mn, Pb, and Zn in floodplain alluvium of the upper Blackfoot River were examined along 20 transects in the upper 105 river kilometers downstream from the tailings dam. Trace element concentrations decrease with distance from the failed dam, with As reaching background concentrations 15 km from the Mike Horse dam, Cd and Pb at 21 km, Cu at 31 km, and Mn and Zn at 37 km. Distance from the Mike Horse tailings dam and mine area is the dominating factor in explaining trace element levels, with R 2 values ranging from 0.67 to 0.89. Maximum floodplain trace element concentrations in the upper basin exceed US. EPA ecological screening levels for plants, birds and other mammals, and reflect adverse hazard quotients for exposure to As and Mn for ATV/motorcycle use. Trace element concentrations in channel bank and bed alluvium are similar to concentrations in floodplain alluvium, indicating active transport of trace elements through the river and deposition on the floodplain. The fine fraction (<2 mm) of floodplain alluvium is dominated by sand-sized particles (2.0–0.05 mm), with Cu and Mn significantly correlated with silt-sized (0.05–0.002 mm) alluvium. Ongoing remediation in the headwaters area will not address metal contamination stored downstream in the channel banks and on the floodplain. Additionally, some trace elements (Cu, Mn and Zn) were conveyed farther downstream than were others (As, Cd, Pb).  相似文献   

8.
Mine drainage from the weathering of sulfide minerals and magnetite   总被引:1,自引:0,他引:1  
Pyrite and pyrrhotite are the principal minerals that generate acid drainage in mine wastes. Low-pH conditions derived from Fe-sulfide oxidation result in the mobilization of contaminant metals (such as Zn, Cd, Ni and Cr) and metalloids (such as As) which are of environmental concern. This paper uses data from detailed mineralogical and geochemical studies conducted at two Canadian tailings impoundments to examine the mineralogical changes that pyrite, pyrrhotite, sphalerite and magnetite undergo during and after sulfide oxidation, and the subsequent release and attenuation of associated trace elements. The stability of sphalerite in tailings impoundments generally is greater than that of pyrrhotite, but less than pyrite. Dissolved Ni and Co derived from Fe sulfides, and to a lesser extent, dissolved Zn and Cd from sphalerite, are commonly attenuated by early-formed Fe oxyhydroxides. As oxidation progresses, a recycling occurs due to continued leaching from low-pH pore waters and because the crystallinity of Fe oxyhydroxides gradually increases which decreases their sorptive capacity. Unlike many other elements, such as Cu, Pb and Cr, which form secondary minerals or remain incorporated into mature Fe oxyhydroxides, Zn and Ni become mobile. Magnetite, which is a potential source of Cr, is relatively stable except under extremely low-pH conditions. A conceptual model for the sequence of events that typically occurs in an oxidizing tailings impoundment is developed outlining the progressive oxidation of a unit of mine waste containing a mixed assemblage of pyrrhotite and pyrite.  相似文献   

9.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

10.
The chemical speciation of potentially toxic elements (As, Cd, Cu, Pb, and Zn) in the contaminated soils and sulfides-rich tailings sediments of an abandoned tungsten mine in Korea was evaluated by conducting modified BCR sequential extraction tests. Kinetic and static batch leaching tests were also conducted to evaluate the potential release of As and other heavy metals by acidic rain water and the leaching behaviors of these heavy metals. The major sources of the elements were As-, Zn- and Pb-bearing sulfides, Pb carbonates (i.e., cerussite), and Pb sulfates (i.e., anglesite). The biggest pollutant fraction in these soil and tailing samples consists of metals bound to the oxidizable host phase, which can be released into the environment if conditions become oxidative, and/or to residual fractions. No significant difference in total element concentrations was observed between the tailings sediments and contaminated soils. For both sample types, almost no changes occurred in the mobility of As and the other heavy metals at 7 days, but the mobility increased afterwards until the end of the tests at 30 days, regardless of the initial pH. However, the mobility was approximately 5–10 times higher at initial pH 1.0 than at initial pHs of 3.0 and 5.0. The leached amounts of all the heavy metal contents were higher from tailings sediments than from contaminated soils at pH > 3.0, but were lower at pH < 3.0 except for As. Results of this study suggest that further dissolution of heavy metals from soil and tailing samples may occur during extended rainfall, resulting in a serious threat to surface and groundwater in the mine area.  相似文献   

11.
The given work focused on solving the problem of environmental geochemistry related to investigation of element speciation, their mobility, and migration in polluted areas. The purpose was to describe quantitatively migration, distribution, and redistribution of heavy metals by the example of the old tailings (Talmovaya sands) of the Lead Zinc Concentration Plant (Salair, Kemerovo region, Russia) and technogenic bottom sediments of the Malaya Talmovaya river. Contents of elements in the sulfide tailings range in the following limits: Zn: 1,100–27,000 ppm, Cd: 1.3–240 ppm, Pb: 0.01–0.81 ppm, Cu: 220–960 ppm, As: 15–970 ppm, Fe: 19,000–76,000 ppm, and Ba: 80,000–1,00,000 ppm. Element concentrations in the river sediment are proportional to the element contents in the sulfide tailings. Element speciations in the sulfide tailings and technogenic bottom sediments were investigated by the modified sequential extraction procedure. Chemical forms of heavy metals in pore water and surface water were calculated by WATEQ4F software. Principles of heavy metal migration in the sulfide tailings and technogenic bottom deposits were established. The obtained results about element species in the sulfide tailings and sediment explain the main principles of element migration and redeposition. In the mine waste and technogenic bottom deposits, there is vertical substance transformation with formation of geochemical barriers.  相似文献   

12.
Arsenic from natural and anthropogenic sources is a worldwide contaminant of aqueous environments, such as groundwater and soils. The present investigation was performed on Mexican soils contaminated with residues from metallurgical processes that have shown a natural As attenuation. Experimental aqueous arsenic extractions in these were successfully simulated for almost half of the soil samples using a database updated for all known metal arsenate formation constants, revealing the predominance of solubility-controlled As mobility via Pb, mixed Pb–Cu, and Ca arsenate solid formation. The relatively low total Fe/As ratios (2–13 w/w) present in the soils studied, together with the high and equivalent contents of As, Pb, and Cu in these, favor the precipitation process over As(V) adsorption to Fe oxides, despite a 2% average Fe content in the soils studied. Under these conditions bicarbonate was found to be a highly unsuitable extractant due to its indirect As release from the solid arsenates, via heavy metal carbonate precipitation processes.  相似文献   

13.
The Haveri tailings area contains 1.5 Mt of sulfide-bearing waste from the Au–Cu mine that operated during 1942–1961. Geophysical and geochemical methods were used to evaluate and characterize the generation of acid mine drainage (AMD). Correlations were examined among the electrical resistivity tomography (ERT) data, the total sulfide content and concentrations of sulfide-bound metals (Cu, Co, Fe, Mn, Ni, Pb and Zn) of tailings samples, and the resistivity and geochemistry of surface water. The resulting geophysical–geochemical model defines an area in the vadose tailings, where a low resistivity anomaly (<10 Ohm m) is correlated with the highest sulfide content, extensive sulfide oxidation and low pH (average 3.1). The physical and geochemical conditions, resulting from the oxidation of the sulfide minerals, suggest that the low resistivity anomaly is associated with acidic and metal-rich porewater (i.e., AMD). The lower resistivity values in the saturated zone of the central impoundment suggest the formation of a plume of AMD. The natural subsoil layer (silt and clay) and the bedrock surface below the tailings area were well mapped from the ERT data. The detected fracture zones of the bedrock that could work as leakage pathways for AMD were consistent with previous geological studies. The integrated methodology of the study offers a promising approach to fast and reliable monitoring of areas of potential AMD generation and its subsurface movement over large areas (ca. 9 ha). This methodology could be helpful in planning drill core sampling locations for geochemical and mineralogical analysis, groundwater sampling, and choosing and monitoring remedial programs.  相似文献   

14.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

15.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

16.
The excitation of structural components and liquid contents of surface impoundments by seismic waves can generate turbulence that is large enough to overtop the bounding berms. In cases in which the liquids are wastes from industrial/municipal operations, their release from impoundments can pose significant risks to the environment. In this analysis, the freeboard magnitudes that can accommodate liquid head levels in impoundments are determined through linkage of configuration of waves in the liquid surface to incident seismic wave characteristics, liquid characteristics and impoundment design. For an impoundment site in a region of ground acceleration levels ranging from 0.2 to 1.0 g and impacted by seismic shear wave velocity of 180 m/s, freeboard requirements are in the range of 0.004–2.0 m on soft soil; 0.008–0.7 m on medium-dense soil; and 0.002–0.1 m for dense soil. For the same impoundment design, ground acceleration and incident wave characteristics, freeboard requirements are directly proportional to the depth of the soil mantle over bedrock. The impoundment slope, which is a key parameter with regards to liquid holding volumetric capacity of the impoundment, is a less significant parameter than depth to bedrock with regard to the size of the required freeboard. This implies that siting of an impoundment should be considered to be critical to impoundment performance in seismic zones.  相似文献   

17.
Heavy metals in tailings and mining wastes from abandoned mines can be released into adjacent agricultural field and bioaccumulated in crops or vegetables. Therefore, prediction of metal bioavailability has become an important issue to prevent adverse effect of bioaccumulated metals on human health. In this study, single and sequential extraction methods were compared using multivariate analysis to predict the bioavailability of Cd and As in contaminated rhizosphere soils. Single extraction using 0.1 M HCl for Cd and 1.0 M HCl for As had an extraction efficiency of 8–12% for soil Cd and 14–17% for soil As compared to total concentration extracted with aqua regia. Using sequential extraction, Fe–Mn-bound Cd (FR3) and residual Cd (FR5) were the dominant fractions representing 43 and 41% of total Cd concentration. For As, the strongly absorbed form (FR2) was the most abundant chemical fraction showing 45–54% of the total As concentration in soil. Multivariate analyses showed that single extraction with HCl and total concentration of Cd and As in soil were significantly correlated to potato and green onion plant tissue metal concentration. Although little information was obtained with multiple regression analysis because of multicollinearity of variables, the result of principle component analysis (PCA) revealed that the highest positive loading was obtained using total concentration of Cd and As in soil in the first principle component (PC1). In addition, total concentration of Cd and As in soil was independently grouped with other chemical fractions by cluster analysis. Therefore, the overall result of this research indicated that total concentrations of Cd and As in rhizosphere soils were the best predictors of bioavailability of heavy metals in these contaminated soils.  相似文献   

18.
小秦岭金矿区土壤重金属生物有效性与影响因素   总被引:1,自引:0,他引:1  
张开军  魏迎春  徐友宁 《地质通报》2014,33(8):1182-1187
土壤中重金属生物有效性与影响因素分析是土壤重金属风险管控的关键问题。通过实地调查、现场采样、实验测试、综合分析等方法,分析了研究区100km2内Hg、Pb、Cd、Cr、As、Cu、Zn七种重金属元素的有效态含量特征,研究了这些重金属有效态含量之间、有效态含量与全量、有效态与土壤pH、有机质含量、粒度等基本理化参数之间的相关性,分析了重金属污染来源。结果表明,土壤中Hg、Pb、Cd、Cr、As、Cu、Zn七种重金属有效态的平均含量分别为2.29mg/kg、594mg/kg、2.52mg/kg、6.30mg/kg、2.16mg/kg、48.14mg/kg、50.21mg/kg,其变异系数大小为:HgPbCuZnCdAsCr。Hg的变异系数最大,是由于金矿选矿活动采用混汞法提金排放的尾矿堆(库)分布不均。Hg、Pb、Cd、Cu、Zn有效态量与全量之间均存在显著的相关性;土壤有机质与重金属有效态之间存在显著的相关性;土壤pH与有效态重金属之间存在显著的负相关性;土壤粒度对重金属有效态的累积影响不明显。  相似文献   

19.
In this work, the interaction of natural organic matter (NOM) with metal(loid)s (Cu, Pb, Zn, Pt, As) and the role of NOM on the metal(loid) transport in a water-saturated quartz sand column were investigated. For detailed information, size exclusion chromatographic (SEC) measurements and “short pulse” laboratory transport experiments with online metal(loid) and NOM detection were used. The SEC measurements showed the formation of metal–NOM complexes. Cu, Pb, Zn and Pt were predominantly bound to the high molecular mass NOM molecules. The binding capacity of the NOM for metals increased with increasing pH value and in the following order: Zn < Pb < Cu < Pt. No evidence for the formation of As–NOM complexes was found. The transport experiments showed no significant influence of NOM on the mobility of Cu, Pb and Zn. The metal–NOM complexes detected in the SEC experiments were obviously sorbed completely onto the grain surfaces in case of the quartz sand system, or they were dissociated partially during passage through the column. No influence of NOM was observed on the transport of As as well. Inorganic Zn and As species were transported through the column with increasing retardation as the pH value increased. Pt showed a high mobility at a pH of 5, and it decreased at a pH of 7 especially in the presence of NOM. The results support the known fact that a decrease in the pH value results in enhanced transport of inorganic metal(loid) species in water-saturated porous media. On the other hand, the presence of NOM can immobilise the metals through metal–NOM complex formation and the deposition of the complexes onto the stationary phase.  相似文献   

20.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号