首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High Arsenic (As) concentrations have been reported in superficial water in the Yamuna flood plains (YFP), Delhi, which is being extensively used for agriculture. The concentration of As in some common vegetables such as Solanum lycopersicum (tomato), Abelmoschus esculentus (lady’s finger), Solanum melongena (brinjal), Lagenaria siceraria (bottle gourd), Raphanus sativus (radish), Zea mays (corn), and Luffa acutangula (ridge gourd) has been studied in this work. The range of As concentrations (dry weight) varies from 0.6 to 2.52 mg/kg with the highest accumulation of 2.52 mg/kg in radish followed by tomato (2.36 mg/kg). The order of As concentration in the decreasing order is R. sativus > S. lycopersicum > Z. mays > L. acutangula > L. siceraria > S. melongena > A. esculentus. Thus, As accumulation is the highest in roots and the lowest in least juicy fruits. The daily dietary intake of As through the consumption of various vegetables was also calculated. Though the mean As concentration was the highest in radish (2.52 mg/kg) but the highest amount of As is being consumed through tomato (0.383 mg/day), which is nearly three times the World Health Organization’s provisional maximum tolerable daily intake limit of 0.126 mg/day for a 60 kg person. High concentration of As in vegetables grown in YFP, Delhi is being reported here. This high contamination is primarily due to the presence of As in irrigation water having its source from coal-based thermal power plants in the vicinity of the area. If not checked properly, it will pose a serious health risk to people living in these densely populated areas surrounding YFP.  相似文献   

2.
The present study aims at assessing water quality of river Yamuna in one of the world’s most polluted and populated megacities, Delhi. Conductivity, salinity and sodium content were within the permissible categories. Chloride concentration exceeded acceptable levels of drinking water guidelines. Water quality was poor at all locations with respect to heavy metal contamination, especially along the lower section of the Delhi stretch. Heavy metal concentrations were manifold higher than the acceptable limits of drinking water according to the BIS guidelines and reached ~29, 4.9, 10, 31, 27, 83, 7.3 and 27 times higher, respectively, for metals aluminum, copper, chromium, cadmium, iron, lead, manganese and nickel. The Najafgarh and the Shahdara drains are major point sources. Low oxidation–reduction potential reflected high organic loads and traces of eutrophication together with significant levels of nitrate and total phosphate. Discharges from agriculture, sewage and power plants could be important sources of high metal concentration. This calls for urgent measures to be taken for prevention of metal contamination in the river, through both, technology as well as implementation of regulations in order to sustain huge populations in megacities like Delhi. Waste water treatment from point sources needs tremendous improvement on the city. Treatment of the entire waste generated up to the tertiary level is required for minimizing dissolved solids, especially toxic metals, and rendering reuse in agriculture suitable. Treatment plants need proper operation, maintenance, uninterrupted power supply and regular monitoring. Various measure and programmes need to be undertaken to ensure safe reuse of wastewater.  相似文献   

3.
4.
泛区洪水演进的一种简单方法   总被引:3,自引:0,他引:3       下载免费PDF全文
在利用泛区作为非工程防洪减灾措施中,洪泛区和洼地的洪水演进是一个实际问题,其困难在于泛区内部复杂的边界条件所引起的特殊的洪水波传播形式。本文基于准二维流概念,结合水文水力学方法,提出了一个以相对独立区分块的蓄量演算模型。  相似文献   

5.
杨劲松  王永  尹金辉  赵华  刘哲  姜高磊  张鹏  戚甲豪 《地球科学》2022,47(11):3944-3959
冲积平原作为城市聚集和人类发展的重要区域,长期面临着巨大的洪水灾害风险,基于平原区丰富的沉积记录开展洪水事件重建研究有助于科学认识洪水历史及规律,具有重要的意义和价值.通过系统梳理国内外在冲积平原洪水重建研究中的最新进展,重点回顾了近年来我国长江中下游平原和华北平原相关代表性成果,分析了平原区洪水沉积主要特征和识别标志,归纳了特大洪水事件的典型沉积序列和主要沉积环境.最后,结合国内外研究热点和前沿,展望了未来我国冲积平原在洪水重建研究的巨大潜力,建议以沉积相和地层关系为基础,进一步扩展洪水重建研究的时空范围,探索从定性到定量获取不同规模洪水的水文信息,进而开展流域尺度的综合分析,深入了解洪水的驱动机制和影响因素.   相似文献   

6.
High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3–164 μg/L), whereas As levels are much lower in the north (SHP-N: 9%  As MCL of 10 μg/L; range 0.2–43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman’s ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ2H: −65 to −27; δ18O: −9.1 to −4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying Triassic Dockum aquifer. Mobilization of As in other semiarid oxidizing systems is caused by increased pH; however, pH in the SHP aquifer is near neutral (10–90 percentiles, 7.0–7.6). Although many processes, such as competitive desorption with SiO2, VO4, or PO4, could be responsible for local mobilization of As in the SHP aquifer, the most plausible explanation for the regional As distribution and correlation with TDS is the counterion effect caused by a change from Ca- to Na-rich, water as shown by the high correlation between As and Na/(Ca)0.5 ratios (ρ = 0.57). This change in chemistry is related to mixing with saline water that moves upward from the underlying Dockum aquifer. This counterion effect may mobilize other anions and oxyanion-forming elements that are correlated with As (F, V, Se, B, Mo and SiO2). Competition among the oxyanions for sorption sites may enhance As mobilization. The SHP case study has similar As sources to those of other semiarid, oxidizing systems (original volcanic ash source followed by sorption onto hydrous metal oxides) but contrasts with these systems by showing lack of evaporative concentration and pH mobilization of As but counterion mobilization of As instead in the SHP-S aquifer.  相似文献   

7.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

8.
After a short review of the development of the concept of anthropogenic changes in the hydrosphere and their classification the authors show that man's impact on water chiefly concerns dynamically renewed water storage.The paper deals with the following problems: the hydrological importance of non-irrigation farming, the effect of water resourcès use for irrigation and water supply, intrazonal water transportation, streamflow regulation with the help of surface and underground reservoirs, water quality management which is more effectively achieved by combatting pollution at cause.In conclusion the authors consider there is a real possibility of improving the water component of the environment.  相似文献   

9.
The groundwater abstracted at a well field near the Yamuna River in Central Delhi, India, has elevated ammonium (NH4 +) concentrations up to 35 mg/L and arsenic (As) concentrations up to 0.146 mg/L, constituting a problem with the provision of safe drinking and irrigation water. Infiltrating sewage-contaminated river water is the primary source of the NH4 + contamination in the aquifer, leading to reducing conditions which probably trigger the release of geogenic As. These conclusions are based on the evaluation of six 8–27-m deep drillings, and 13 surface-water and 69 groundwater samples collected during seven field campaigns (2012–2013). Results indicate that losing stream conditions prevail and the river water infiltrates into the shallow floodplain aquifer (up to 16 m thickness), which consists of a 1–2-m thick layer of calcareous nodules (locally known as kankar) overlain by medium sand. Because of its higher hydraulic conductivity (3.7 × 10?3 m/s, as opposed to 3.5 × 10?4 m/s in the sand), the kankar layer serves as the main pathway for the infiltrating water. However, the NH4 + plume front advances more rapidly in the sand layer because of its significantly lower cation exchange capacity. Elevated As concentrations were only observed within the NH4 + plume indicating a causal connection with the infiltrating reducing river water.  相似文献   

10.
The nature of porosity in 11 Alberta Plains coals is scanned using different characterization techniques, namely, gas adsorption, helium and mercury displacement, and mercury porosimetry. Surface areas calculated from carbon dioxide adsorption at 25°C (varying between 75 and 506 m2/g) are consistently higher than those calculated from nitrogen at −196°C (varying between 1 and 9 m2/g). The samples from Paskapoo deposits have slightly higher surface areas as compared to samples from Horseshoe Canyon deposits. The carbon content in the tested coals (73.4 to 76.8%) is too narrow of range to determine the influence of this parameter on surface area and porosity.Total pore volumes are measured in the range 1.2 to 3000 nm and then divided into macropores (30 to 3000 nm), transitional pores (1.2 to 30 nm) and micropores (less than 1.2 nm). Almost all the surface area in coals is located in the micropores. Coals vary widely in their total pore volumes and porosities range between 9.5 and 22.3%. Percent pore volume contained in micropores varies between 29.5 and 75.9, in transitional pores between 1.1 and 20.5 and in macropores between 18.5 and 50.0.  相似文献   

11.
12.
13.
Doklady Earth Sciences -  相似文献   

14.
15.
In this study, soil response was carried out for the Greater Delhi region. A folded Proterozoic formation was identified as Delhi ridge, passes through its central part along SSW–NNE direction, and appears to be a main geomorphic feature for the study area. The Delhi ridge is an exposed quartzite rock of about 10–100 m wide and ~25 km long with gentler dipping both toward east and west. We have considered the exposed part as an outcrop side near the ridge axis and the dipping area as rigid base away from the ridge axis for ground motion study during the occurrence of the 25 November 2007 earthquake with magnitude M L 4.3 (Richter scale) that occurred at Delhi–Haryana State boundary. The degree of shaking was very strong and reported major cracks in the buildings near the epicenter area. We have studied the soil response parameters at the surface level, considering horizontally stratified soil layers above rigid base. The equivalent linear method was used for soil response analysis at 25 sites in Greater Delhi area. The peak amplification factors vary from 3.2 to 5.9 and peak resonance frequency varies from 1.2 to 5.3 Hz. The correlation among the peak amplification factor (A) and frequency (f) was empirically established as A = 0.36f + 3.60. Increasing peak amplification factor was found at sites with increasingly thicker alluvium deposit with lower frequency contains ground motion and vice versa. Seismic zoning map was also reconstructed for peak amplification factors and predominant periods for the study area for the mitigation purposes of earthquake damage. The average shear wave velocity up to 30 m soil depth is also obtained for site classification. The average velocity to 30 m [ $ \overline{{V_{\text{s}} }} (30) $ ] is a widely used parameter for classifying sites for predicting their potentiality to amplify seismic shaking. A lower value [ $ \overline{{V_{\text{s}} }} (30) $ ] thus yields a more conservative estimate of ground motion, which generally increases as $ \overline{{V_{\text{s}} }} (30) $ decreases. Present estimate of $ \overline{{V_{\text{s}} }} (30) $ varies from 315 to 419 m/s. In this study, we have identified two site classes C and D, as per National Earthquake Hazard Reduction Program. The city planner or engineers can directly use these data for site-specific assessment during retrofitting of the existing structure, demolition of the old buildings and design a new structure to avoid major destruction of the buildings due to future earthquake.  相似文献   

16.
Yan ZHENG 《中国地质》2010,37(3):723-729
研究表明饮用水中微小数量的砷会对人类健康产生不利影响.世界上居住在贫穷地区的人数超过了100万,目前他们正直接饮用来自含水层中砷离子含量(>10μg/L)非安全标准的地下水.砷有时称为毒中之王,在水环境中常常以五价氧化物形式出现.自2000年以来,许多国家开始执行更为严格的10μg/L(WHO认可的居民安全饮水标准)饮用水标准,可以确定地说,在世界范围内的饮用水中检测到砷的情况越来越多.亚洲地区砷中毒的人数比世界其他地区总和还多.最受影响的地区位于南亚和东南亚富砷带,环绕恒河一雅鲁藏布江-梅克纳河三角洲及恒河平原上游的冲洪积扇含水层、红河三角洲、湄公河和伊洛瓦底江;在中国境内包括内蒙黄河冲积盆地,山西大同盆地、新疆准噶尔盆地,其中的地下水富含砷和氟化物而引发砷中毒和氟中毒.尽管还未完全掌握其中的水文地质及生物地球化学作用的详细过程,但对大多数沉积介质含水层,在还原条件下砷离子容易从沉积介质转移到地下水中.孟加拉研究实例表明地质时期尺度的冲刷降低了沉积介质中的As和有机物含量从而形成低砷地下水.这一认识为孟加拉国的降砷策略提供了科学指导,是未来水文学,矿物学,地质学和生物地球化学方面很有意义的研究方向,并有利于地砷病区低砷地下水的可持续利用.  相似文献   

17.
18.
This report examines the problem involving the pumping of groundwater from a group of 90 existing wells along the banks of the Yamuna River, northwest of Delhi (India), underlain with geologically occurring saline water. It is known that unregulated pumping will lead to upconing of saline water and therefore it is necessary to determine optimal rates and associated well locations (from an existing group of candidate wells that supply drinking water to the city of Delhi) that will minimize the total salinity. The nonlinear, non-convex problem is solved by embedding the calibrated groundwater model within a simulation-optimisation (S/O) framework. Optimisation is accomplished by using simulated annealing (SA), a search algorithm. The computational burden is primarily managed by replacing the numerical model with a surrogate simulator-artificial neural network (ANN). The model is applied to the real system to determine the optimal pumping schedule. The results of the operational model suggest that the skimming wells must be operated from optimal locations such that they are staggered in space and time to obtain the least saline water.  相似文献   

19.
论河流汛期时变设计洪水   总被引:4,自引:1,他引:4  
王善序 《水文》2001,21(3):18-19,29
论述了时变设计洪水优化水库防洪设计和提高水库兴利效益的重要性,提出了以带时畸参数泊松标准过程作为描述汛期洪水时变规律的概率模型,并建议彩和时段设计洪水作为水库运用期设计洪水,它既反映汛期洪水演变规律,又满防洪标准,一个实例分析计算和检验结果表明,模型与实际资料合良好,计算结果合理,具有良好的推广和应用前景。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号