首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
罗光强 《地质与勘探》2022,58(3):696-702
为实时、安全、准确、高效地获取钻井现场实时数据,配套已有智能化钻参仪系统或者录井信息系统,本研究通过虚拟仪器LabVIEW、Matlab、C++、Access数据库、神经网络相结合的编程方式,完成由无线发送接收模块、远程网络传输模块、数据库模块、复杂钻进工况识别模块、事故诊断模块等5大模块组成的一套深孔智能化钻井参数远程监控及工况识别系统。基于科学钻探汶川科钻WFSD-4孔的传输及应用,证明其方便快捷,可广泛适用于配套不同类型的智能化钻参仪,提升钻井信息化水平,远程实时作业监控,工况识别事故诊断,为深部岩心钻探、干热岩高温钻孔、科学钻探工程、新能源资源勘查提供技术支撑。  相似文献   

2.
针对全液压深孔钻机的特点,研制了一种钻探参数监测系统(简称钻参仪)。该钻参仪采用模块化设计,可实现钻探参数实时监测、存储、回看、工况识别和数据远近程无线传输等功能。现场试验表明,该钻参仪技术先进,性能稳定可靠,可满足施工需要,效果显著。   相似文献   

3.
在深孔、定向孔钻进过程中,对钻孔轨迹的控制十分重要。电磁随钻测量系统能够监测钻孔状态参数并通过无线电磁波实时传输至地面,具有信号传输速率高、不受钻井液影响等优势。详细阐述了一种自主研发的电磁随钻测量系统及试验情况,试验最大孔深为609 m,此时地面接收信号高达200 mV。试验研究表明:该系统性能可靠,完全能够满足随钻测量近钻头处钻孔状态及环空压力、温度等参数的需求。  相似文献   

4.
钻探参数实时采集系统研制的目的是向钻探技术及管理人员提供直观的钻探实时参数,通过该系统可全天候的掌握钻探工况。钻探参数采集的方法是通过传感器采集压力、转速、位移、流量、液位等物理参数,使用配套的软硬件设备进行数据转换和处理,在人机交互界面显示直观的工程参数。该系统根据野外现场不同工作环境可以使用互联网、GPRS终端或者北斗卫星终端把现场实时工程数据无线传输至远程服务器上,用户通过手机或电脑即可查看到现场的实时或历史工程数据。采用本系统可以预防和减少钻探事故,为事故处理提供数据支撑,为实现钻探自动化、智能化提供基础数据。  相似文献   

5.
智能化自动化钻探技术与装备发展概述   总被引:1,自引:1,他引:0       下载免费PDF全文
持续开展大深度智能地质钻探关键技术与装备的研发是当前钻井技术发展的主要方向,同时也是实现深地开拓必要的科技手段之一。本文简要回顾了钻探技术与装备发展概况,介绍了智能化自动化钻井技术与智能化自动化钻井工具。并结合现阶段我国5000米智能化自动化钻探技术与装备的研究进展,重点介绍了项目研究目标、研究内容和预期成果,提出了我国现阶段智能化自动化钻探技术与装备发展目标,以期为探索地球深部奥秘、勘探深部资源提供技术装备支撑。  相似文献   

6.
科学深钻DPI-1智能化多功能钻参仪的研制与应用研究   总被引:1,自引:0,他引:1  
罗光强 《地质与勘探》2014,50(4):777-782
在科学钻探中,智能化钻参仪被称为“钻井工程的眼睛”。根据深部钻探项目需要,研制了一套DPI-1智能化多功能钻参仪系统,它能检测多路关键钻进参数,自动生成电子班报表,建立数据库管理系统,完成数据近程基地无线传输和远程网络传输。科学钻探现场试验证明,该系统安装简便、测试精度高、稳定性好、实用性强,可广泛适用于配套转盘钻机、立轴钻机、全液压钻机等不同类型钻机。  相似文献   

7.
刘睿全 《探矿工程》2013,40(5):44-47
针对煤矿井下定向钻技术对钻杆的随钻测量通讯和强度要求,钻杆采用中心通缆方式,可实时传输钻孔随钻测量信号。采用高强度管材、特种螺纹丝扣结构、摩擦焊技术,可提高钻杆抗拉、压、弯、扭强度。并根据现场使用中存在的问题给出了解决方法。大佛寺煤矿随钻测量应用实例说明中心通缆钻杆满足最大孔深1200 m的随钻测量通讯和钻杆强度要求,朱仙庄梳状孔应用实例说明中心通缆钻杆满足最小弯曲半径54 m定向孔施工,哈沙图煤矿定向钻孔应用实例说明中心通缆钻杆满足急倾斜58?煤层定向孔施工。  相似文献   

8.
姚克 《探矿工程》2020,47(10):48-52,71
煤矿井下智能化钻探技术及装备是煤炭生产企业急需的先进技术装备。文章介绍了相关科研院所及企业在研制自动化钻机方面取得的一些阶段性成果。由于钻探施工环节多、工艺复杂、现场条件多变,许多关键技术仍未解决,智能化程度、可靠性、适应性和实用性还需进一步提高。文章分析了钻机装备适应性、工艺复杂性及需求的多样性问题、防爆问题和钻杆连接及钻杆补充问题。指出需要开展导航与定位、程序控制自动钻进、自动装卸钻杆、参数实时监测及传输等技术攻关,从而达到智能钻机功能实用、施工高效及性能稳定的目标。同时指出真正意义上的智能化钻机大量应用还需要持续的研发投入和数年的时间过程,并提出逐步按全自动钻机阶段、智能化钻机阶段和钻孔机器人3个阶段分级实现井下智能化钻探较为适宜。  相似文献   

9.
鉴于地矿钻参仪滞后于深孔钻探的发展,开发出了一套适用于地矿钻机的智能化钻参仪。本智能化钻参仪由四个子系统构成,即硬件数据采集子系统、软件数据处理子系统、信息网络共享子系统及工况识别子系统。本文分别介绍了四个子系统的主要功能,重点对各个子系统实现原理进行了阐述。系统目前已投入野外现场试用,应用表明,该智能化钻参仪能满足地矿深孔钻探数据采集及远程共享数据的需求。本文将为后来学者深入研究智能化钻参仪提供参考价值。  相似文献   

10.
为应对深地探测工程对特深孔地质钻探装备提出的新要求,“十三五”国家重点研发计划立项开展5000 m地质岩心钻机的研发。作为钻机核心部件的主绞车,需要满足自动化、智能化钻探需求。在调研了主绞车的研究发展现状基础上,借鉴石油钻机绞车的结构,确定了本主绞车运行参数及方案,并对关键零部件进行了设计与选型,完成了主绞车的设计。经过验算,主绞车运行参数能满足特深孔岩心钻探工艺的要求,并可以在地热、浅层油气探采等领域进行应用拓展。  相似文献   

11.
Drilling engineering is technology-intensive and involves many subjects and large amounts of data. To improve the quality of production and management, decisions need to be made based on the latest data to direct the work on-site. Therefore, it is necessary to establish a safe, reliable, and efficient drilling management system that can meet daily production requirements. In this study, we describe a real-time monitoring system of field data. The system comprises real-time collection of borehole drilling parameters, ground drilling parameters, on-site video and borehole position data, and wireless data transmission to site and rear managers. The system is based on real-time monitoring of field data, the recognition and prediction of the conditions inside the borehole, the wireless transmission of data, and rear-base data analysis and feedback modules. The rear managers can view the real-time and historical drilling data at any time and compare and analyze drilling data by using the rear software of the management system to optimize the drilling program and feedback to the site. The application of the management system in production suggests that it can significantly improve drilling efficiency, reduce drilling costs and accidents in wells, and improve the automation of drilling operations. Moreover, at the same time, it can also predict complex conditions and drilling accidents in time and provide reliable real-time data to drilling technicians for on-site decision making.  相似文献   

12.
岩心钻探作业安全规范化管理初探   总被引:5,自引:1,他引:4  
王伟 《地质与勘探》2009,45(5):631-636
地质勘探作为工业领域的第一步,是探明资源、能源的重要手段,同时也是一种高危险作业,本文以XY—4型钻机为例,分析了地质勘探中岩心钻探作业的常见事故类型,并应用系统工程学理论方法对钻探工艺的安全问题进行剖析,得出了适合岩心钻探作业的安全规范化管理模式。  相似文献   

13.
针对我国西南岩溶山区地质灾害监测与数据传输困难的问题,利用微电子、无线通信及控制策略优化技术,提出了一种基于远距离无线电(Long Range Radio,LoRa)的地质灾害分布式实时监测系统的设计方案。该方案以低功耗嵌入式微控制器STM32L071和基于LoRa的SX1278无线通信模块为核心,采用星型拓扑结构进行自组网设计,构建了通信距离较远、数据传输稳定的监测硬件系统。同时加入智能化软件控制技术,解决了野外设备功耗与实时性的矛盾,实现了对灾害体多种监测参数的实时采集和传输。通过野外试验对设备的传输稳定性和实时性进行分析,试验结果表明:在4个月的试验周期中,设备在数据传输过程中收包率达到92%以上,在监测到灾害体变化时数据采集实时性达到秒级。该系统具有功耗低、不受地貌限制、通信稳定等技术特点,可以有效解决复杂山区地质灾害监测困难的问题。  相似文献   

14.
李勇  陈怡  王虎  吴晓兰 《探矿工程》2015,42(1):27-30
贵州省岩溶裂隙地层发育,地层复杂,地热勘探井施工难度大。根据磺化沥青的基本特性,分析了磺化沥青钻井液护壁防塌机理,确定了性能合理的磺化沥青钻井液配方,并在贵州省铜仁市西部地区地热水资源整装勘查沿河勘查区块地热勘探孔(ZK2)进行了生产应用。实际施工表明,磺化沥青钻井液护壁防塌效果良好,提高了钻井效率,取得了良好的经济效益。结合实际应用情况对磺化沥青在地热井施工中的使用提出了建议。  相似文献   

15.
朱恒银 《地质与勘探》2016,52(6):1159-1166
新型能源勘探与常规矿产资源勘探的要求有所不同,其主要特征是孔深、直径大、地层复杂、工程精度要求高,而小口径绳索取心钻进工艺技术已难以满足新型能源勘探的要求。为了解决这一问题,本次研究在小口径绳索取心钻具的基础上加以改进,研发了一种大直径加重管组合绳索取心钻具,并在浙江临安页岩气勘探区块钻探中应用,解决了大直径深孔取心效率问题,取得了良好的效果。该钻具具有孔底加压、工作稳定、保直防斜、冲洗液上返阻力小,一次性成孔等特点,对深孔大直径绳索取心钻探技术的探索研究具有一定的指导和启迪作用。本文重点介绍了该钻具设计思路和方案,钻具结构作用原理和主要技术参数及应用情况。  相似文献   

16.
针对现有煤矿井下随钻测量系统信号传输必须依赖通缆专用钻杆而不能采用常规钻杆的技术限制,提出泥浆脉冲无线传输技术,以钻杆柱内环空间为信号传输通道,通过对孔内轨迹参数测量、泥浆脉冲载波信号传输、间歇工作模式设计与控制、孔口信号接收与解调处理等关键技术研究,研制了基于泥浆脉冲的矿用无线随钻测量装置YHD3-1500,并在山西晋城寺河和成庄煤矿进行了试验。试验结果表明:泥浆脉冲无线随钻测量装置信号幅度大、传输距离远、工作时间长、工作稳定性强。装置使用过程中不受钻杆限制,不但可提高钻孔深度,又可实现钻孔轨迹实时控制,进一步拓宽了定向钻进应用领域,具有极大的推广应用价值。   相似文献   

17.
绿色勘查是实现资源保障与生态保护并举的唯一选择。本文结合浅钻技术在内蒙古中东部荒漠草原浅覆盖区填图项目中的施工实践,初步总结了一套基于绿色勘查的浅覆盖区填图钻探技术方法体系,包括机动轻便钻机具、环保冲洗液、钻探与测井技术综合应用、以钻代槽及钻探施工组织管理等技术方法,并对存在的不足进行了探讨,为绿色勘查技术的发展提供了支撑。  相似文献   

18.
计算机辅助钻孔设计与轨迹监控是钻探工程信息化和数字化发展的必要条件,从理论上、技术上和方法上对计算机辅助设计技术在钻探工程中的应用展开进一步的研究十分必要。钻孔设计与轨迹动态监控系统以定向钻探工程钻孔轨迹控制参数设计和钻孔轨迹分析监控为主,同时包括钻孔轨迹二维图形和三维图形绘制、钻探工程综合技术图、钻孔地质设计书和钻孔地质柱状图等钻探工程技术文件的自动生成等模块功能,利用计算机强大的数据处理及计算、图形绘制及生成等功能,通过软件编程和数据录入,自动完成钻孔设计与轨迹监控。该系统软件不仅适用于定向钻探工程设计与过程监控,还可作为钻探工程电子档案和钻探工程数字化管理系统的组成部分。系统软件经过了野外实践验证,并达到了预期的应用效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号