首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

2.
Products of the latest eruptions from the Valles caldera, New Mexico, consist of the El Cajete Pyroclastic Beds and Battleship Rock Ignimbrite, a sequence of pyroclastic fall and density current deposits erupted at ~ 55 ka, capped by the later Banco Bonito Flow erupted at ~ 40 ka, and collectively named the East Fork Member of the Valles Rhyolite. The stratigraphy of the East Fork Member has been the subject of conflicting interpretations in the past; a long-running investigation of short-lived exposures over a period of many years enables us to present a more complete event stratigraphy for these eruptions than has hitherto been possible. The volume of rhyolitic magma erupted during the 55 ka event may have been more than 10 km3, and for the 40 ka event can be estimated with rather more confidence at 4 km3. During the earlier event, plinian eruptions dispersed fallout pumice over much of the Valles caldera, the southern Jemez Mountains, and the Rio Grande rift. We infer a fallout thickness of several decimeters at the site of the city of Santa Fe, and significant ash fall in eastern New Mexico. In contrast, pyroclastic density currents were channeled within the caldera moat and southwestward into the head of Cañon de San Diego, the principal drainage from the caldera. Simultaneous (or rapidly alternating) pyroclastic fallout and density current activity characterized the ~ 55 ka event, with density currents becoming more frequent as the eruption progressed through two distinct stages separated by a brief hiatus. One early pyroclastic surge razed a forest in the southern caldera moat, in a similar manner to the initial blast of the May 18, 1980 eruption of Mt. St. Helens. Ignimbrite outflow from the caldera through the drainage notch may have been restricted in runout distance due to steep, rugged topography in this vicinity promoting mixing between flows and air, and the formation of phoenix clouds. Lavas erupted during both the ~ 55 and ~ 40 ka events were largely confined to the caldera moat. Any future rhyolitic eruptions of similar magnitude in the southern or western parts of the Valles caldera will likely affect similar areas.  相似文献   

3.
Peak eruption column heights for the B1, B2, B3 and B4 units of the May 18, 1980 fall deposit from Mount St. Helens have been determined from pumice and lithic clast sizes and models of tephra dispersal. Column heights determined from the fall deposit agree well with those determined by radar measurements. B1 and B2 units were derived from plinian activity between 0900 and about 1215 hrs. B3 was formed by fallout of tephra from plumes that rose off pyroclastic flows from about 1215 to 1630 hrs. A brief return to plinian activity between 1630 and 1715 hrs was marked by a maximum in column height (19 km) during deposition of B4.Variations in magma discharge during the eruption have been reconstructed from modelling of column height during plinian discharge and mass-balance calculations based on the volume of pyroclastic flows and coignimbrite ash. Peak magma discharge occurred during the period 1215–1630 hrs, when pyroclastic flows were generated by collapse of low fountains through the crater breach. Pyroclastic flow deposits and the widely dispersed co-ignimbrite ash account for 77% of the total erupted mass, with only 23% derived from plinian discharge.A shift in eruptive style at noon on May 18 may have been associated with increase in magma discharge and the eruption of silicic andesite mingled with the dominant mafic dacite. Increasing abundance of the silicic andesite during the period of highest magma discharge is consistent with the draw-up and tapping of deeper levels in the magma reservoir, as predicted by theoretical models of magma withdrawal. Return to plinian activity late in the afternoon, when magma discharge decreased, is consistent with theoretical predictions of eruption column behavior. The dominant generation of pyroclastic flows during the May 18 eruption can be attributed to the low bulk volatile content of the magma and the increasing magma discharge that resulted in the transition from a stable, convective eruption column to a collapsing one.  相似文献   

4.
A detailed stratigraphic analysis of the Avellino plinian deposit of the Somma-Vesuvius volcano shows a complicated eruptive sequence controlled by a combination of magmatic and hydromagmatic processes. The role of external water on the eruptive dynamics was most relevant in the very early phase of the eruption when the groundwater explosively interacted with a rising, gas-exolving magma body creating the first conduit. This phase generated pyroclastic surge and phreatoplinian deposits followed by a rapidly increasing discharge of a gas-rich, pure magmatic phase which erupted as the most violent plinian episode. This continuing plinian phase tapped the magma chamber, generating about 2.9 km3 of reverse-graded fallout pumice, more differentiated at the base and more primitive at the top (white and gray pumice). A giant, plinian column, rapidly grew up reaching a maximum height of 36 km.The progressive magma evacuation at a maximum discharge rate of 108 kg/s that accompanied a decrease of magmatic volatile content in the lower primitive magma allowed external water to enter the magma chamber, resulting in a drastic change in the eruptive style and deposit type. Early wet hydromagmatic events were followed by dry ones and only a few, subordinated magmatic phases. A thick, impressive sequence of pyroclastic surge bedsets of over 430 km2 in area with a total volume of about 1 km3 is the visible result of this hydromagmatic phase.  相似文献   

5.
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances.  相似文献   

6.
Cotopaxi, the highest active volcano on earth and one of the most dangerous of Ecuador is constituted by a composite cone made up of lava and tephra erupted from the summit crater. The activity of the present volcano begun with large-volume plinian eruptions followed by a succession of small-volume lava emissions and pyroclastic episodes which led to the edification of a symmetrical cone. The growth of the cone was broken by an episode of slope failure, the scar of which is now obliterated by recent and historical products. Volcanic history, eruptive frequency and characteristics of the activity were investigated by studying the stratigraphy of tephra and carrying out fifteen new 14C dating on paleosols and charcoals. The investigated period is comprised between the slope failure and the present. The deposit of the volcanic landside (dry debris avalanche of Rio Pita), previously believed to be between 13,000 and 25,000 yr B.P., is now considered to have an age slightly older than 5000 yr B.P. The stratigraphy of tephra of the last 2000 years reveals the existence of 22 fallout layers. Seven of them were dated with 14C whereas three were ascribed to the eruptions of 1534, 1768 and 1877 on the basis of comparison with historical information.Maximum clast size distribution (isopleths) of 9 tephra layers points out that the sustained explosive eruptions of Cotopaxi during the last 2000 years are characterized by very high dispersive power (plinian plumes with column heights between 28 and 39 km) and high intensity (peak mass discharges from 1.1 to 4.1 × 108kg/s). The magnitude (mass) of tephra fallout deposits calculated from distribution of thickness (isopaches) are, however, moderate (from 0.8 to 7.2 × 1011 kg). The limited volume of magma erupted during each explosive episode is consistent with the lack of caldera collapses. Small-volume pyroclastic flows and surges virtually accompanied all identified tephra fallouts. During such an activity large scale snow/ice melting of the summit glacier produced devastating mudflows comparable in scale to those of 1877 eruption. By assuming a 1:1 correspondence between fallout episodes and generation of large-scale lahar, we have estimated an average recurrence of one explosive, lahartriggering event every 117 years over the last two millennia. This value compares well with that calculated by considering the period since Spanish Conquest. The probability of having an eruption like this in 100 or 200 years is respectively of 0.57 and 0.82. Such an high probability underscores the need for quick actions aimed at the mitigation of Cotopaxi lahar hazard along all the main valleys which originate from the volcano.  相似文献   

7.
The Rio Caliente ignimbrite is a multi-flow unit orcompound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, anintraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded between ignimbrite flow units. A chaotic near-vent facies of the ignimbrite includes co-ignimbrite lag breccias segregated from proximal pumice flows. The facies locates a central vent but one which could not have been associated with a well defined edifice. Many of the lithics in the exposed lag breccias and near-vent facies of the ignimbrite appear to be fragments of welded Rio Caliente ignimbrite, and indicate considerable vent widening, or migration, during the eruption. Nearer vent the ignimbrite is thickest and composed of the largest number of flow units. Here it is welded and is a simple cooling unit. Evidence suggests that it was only the larger thicker pumice flows that escaped to the outer parts of the sheet. Detailed analysis of four flow units indicates that the pumice flows were generally poorly expanded, less mobile flows which would be produced by collapse of low eruption columns. The analogy of a compound ignimbrite with a compound lava flow is, therefore, good — a compound lava flow forms instead of a simple one when the volumetric discharge rate (or intensity) is low, and in explosive eruptions this predicts lower eruption column heights. A corollary is that the ignimbrite has a high aspect ratio. The complex eruption sequence shows the reinstatement of plinian activity several times during the eruption after column collapse occurred. This, together with erosional breaks and evidence that solidified fragments of already welded ignimbrite were re-ejected, all suggest the eruption lasted a relatively significant time period. Nearly 90 km3 of tephra were erupted. The associated plinian pumice fall is one of the largest known having a volume of 50 km3 and the ignimbrite, plus a co-ignimbrite ash-fall, have a volume of nearly 40 km3. Published welding models applied to the reejected welded blocks indicate an eruption duration of 15-20d, and a maximum average magma-discharge rate of 1.4 × 104 m3/s for the ignimbrite. This is low intensity when compared with available data from other ignimbrite-forming eruptions, and concurs with all the geological evidence presented. The total eruption duration was perhaps 15-31d, which is consistent with other estimates of the duration of large magnitude explosive silicic eruptions.  相似文献   

8.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

9.
Batur volcanic field (BVF) in Bali, Indonesia, underwent two successive caldera-forming eruptions, CI and CII (29,300 and 20,150 years b.p., respectively) that resulted in the deposition of dacitic ignimbrites. The respective ignimbrites show contrasted stratigraphies, exemplify the variability of dynamics associated with caldera-forming eruptions and provide insights into the possible controls exerted by caldera collapse mechanisms. The Ubud Ignimbrite is widespread and covers most of southern Bali. The deposits consist dominantly of pyroclastic flow with minor pumice fall deposits. The intra-caldera succession comprises three distinct, partially to densely welded cooling units separated by non-welded pyroclastic flow and fall deposits. The three cooling units consist of pyroclastic flow deposits only and together represent up to 16 distinct flow units, each including a thin, basal, lithic-rich breccia. This eruption was related to a 13.5×10 km caldera (CI) with a minimum collapsed volume of 62 km3. The floor of caldera CI is inferred to have a piecemeal geometry. The Ubud Ignimbrite is interpreted as the product of a relatively long-lasting, pulsating, collapsing fountain that underwent at least two time breaks. A stable column developed during the second time break. Discharge rate was high overall, but oscillatory, and increased toward the end of the eruption. These dynamics are thought to reflect sequential collapse of the CI structure. The Gunungkawi Ignimbrite is of more limited extent outside the source caldera and occurs only in central southern Bali. The Gunungkawi Ignimbrite proximal deposits consist of interbedded accretionary lapilli-bearing ash surge, ash fall, pumice lapilli fall and thin pyroclastic flow deposits, overlain by a thick and massive pyroclastic flow deposit with a thick basal lag breccia. The caldera (CII) is 7.5×6 km in size, with a minimum collapsed volume of 9 km3. The CII eruption included two distinct phases. During the first, eruption intensity was low to moderate and an unstable, essentially phreatomagmatic column developed. During the second phase, the onset of caldera collapse drastically increased the eruption intensity, resulting in column collapse. The caldera floor is believed to have subsided rapidly, producing a single, short-lived burst of high eruption intensity that resulted in the deposition of the uppermost massive pyroclastic flow.Editorial responsibility: T. Druitt  相似文献   

10.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

11.
A study of pyroclastic deposits from the 1815 Tambora eruption reveals two distinct phases of activity, i.e., four initial tephra falls followed by generation of pyroclastic flows and the production of major co-ignimbrite ash fall. The first explosive event produced minor ash fall from phreatomagmatic explosions (F-1 layer). The second event was a Plinian eruption (F-2) correlated to the large explosion of 5 April 1815, which produced a column height of 33 km with an eruption rate of 1.1 × 108 kg/s. The third event occurred during the lull in major activity from 5 to 10 April and produced minor ash fall (F-3). The fourth event produced a 43-km-high Plinian eruption column with an eruption rate of 2.8 × 108 kg/s during the climax of activity on 10 April. Although very energetic, the Plinian events were of short duration (2.8 h each) and total erupted volume of the early (F-1 to F-4) fall deposits is only 1.8 km3 (DRE, dense rock equivalent). An abrupt change in style of activity occurred at end of the second Plinian event with onset of pyroclastic flow and surge generation. At least seven pyroclastic flows were generated, which spread over most of the volcano and Sanggar peninsula and entered the ocean. The volume of pyroclastic flow deposits on land is 2.6 km3 DRE. Coastal exposures show that pyroclastic flows entering the sea became highly fines depleted, resulting in mass loss of about 32%, in addition to 8% glass elutriation, as indicated by component fractionation. The subaqueous pyroclastic flows have thus lost about 40% of mass compared to the original erupted mixture. Pyroclastic flows and surges from this phase of the eruption are stratigraphically equivalent to a major ash fall deposit (F-5) present beyond the flow and surge zone at 40 km from the source and in distal areas. The F-5 fall deposit forms a larger proportion of the total tephra fall with increasing distance from source and represents about 80% of the total at a distance of 90 km and 92% of the total tephra fall from the 1815 eruption. The field relations indicate that the 20-km3 (DRE) F-5 deposit is a co-ignimbrite ash fall, generated largely during entrance of pyroclastic flows into the ocean. Based on the observed 40% fines depletion and component fractionation from the flows, the large volume of the F-5 co-ignimbrite ash requires eruption of 50 km3 (DRE, 1.4 × 1014 kg) pyroclastic flows.  相似文献   

12.
The caldera-forming eruption of Volcán Ceboruco, Mexico   总被引:1,自引:1,他引:0  
3 of magma erupted, ∼95% of which was deposited as fall layers. During most of the deposition of P1, eruptive intensity (mass flux) was almost constant at 4–8×107 kg s−1, producing a Plinian column 25–30 km in height. Size grading at the top of P1 indicates, however, that mass flux waned dramatically, and possibly that there was a brief pause in the eruption. During the post-P1 phase of the eruption, a much smaller volume of magma erupted, although mass flux varied by more than an order of magnitude. We suggest that caldera collapse began at the end of the P1 phase of the eruption, because along with the large differences in mass flux behavior between P1 and post-P1 layers, there were also dramatic changes in lithic content (P1 contains ∼8% lithics; post-P1 layers contain 30–60%) and magma composition (P1 is 98% rhyodacite; post-P1 layers are 60–90% rhyodacite). However, the total volume of magma erupted during the Jala pumice event is close to that estimated for the caldera. These observations appear to conflict with models which envision that, after an eruption is initiated by overpressure in the magma chamber, caldera collapse begins when the reservoir becomes underpressurized as a result of the removal of magma. The conflict arises because firstly, the P1 layer makes up too large a proportion (∼75%) of the total volume erupted to correspond to an overpressurized phase, and secondly, the caldera volume exceeds the post-P1 volume of magma by at least a factor of three. The mismatches between model and observations could be reconciled if collapse began near the beginning of the eruption, but no record of such early collapse is evident in the tephra sequence. The apparent inability to place the Jala pumice eruptive sequence into existing models of caldera collapse, which were constructed to explain the formation of calderas much greater in volume than that at Ceboruco, may indicate that differences in caldera mechanics exist that depend on size or that a more general model for caldera formation is needed. Received: 18 November 1998 / Accepted: 23 October 1999  相似文献   

13.
 A radar and gravity survey of the ice-filled caldera at Volcán Sollipulli, Chile, indicates that the intra-caldera ice has a thickness of up to 650 m in its central part and that the caldera harbours a minimum of 6 km3 of ice. Reconnaissance geological observations show that the volcano has erupted compositions ranging from olivine basalt to dacite and have identified five distinct volcanic units in the caldera walls. Pre- or syn-caldera collapse deposits (the Sharkfin pyroclastic unit) comprise a sequence which evolved from subglacial to subaerial facies. Post-caldera collapse products, which crop out along 17 of the 20 km length of the caldera wall, were erupted almost exclusively along the caldera margins in the presence of a large body of intra-caldera ice. The Alpehué crater, formed by an explosive eruption between 2960 and 2780 a. BP, in the southwest part of the caldera is shown to post date formation of the caldera. Sollipulli lacks voluminous silicic pyroclastic rocks associated with caldera formation and the collapse structure does not appear to be a consequence of a large-magnitude explosive eruption. Instead, lateral magma movement at depth resulting in emptying of the magma chamber may have generated the caldera. The radar and gravity data show that the central part of the caldera floor is flat but, within a few hundred metres of the caldera walls, the floor has a stepped topography with relatively low-density rock bodies beneath the ice in this region. This, coupled with the fact that most of the post-caldera eruptions have taken place along the caldera walls, implies that the caldera has been substantially modified by subglacial marginal eruptions. Sollipulli caldera has evolved from a collapse to a constructional feature with intra-caldera ice playing a major role. The post-caldera eruptions have resulted in an increase in height of the walls and concomitant deepening of the caldera with time. Received: 12 June 1995 / Accepted: 7 December 1995  相似文献   

14.
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ∼850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kuril-Kamchatka region occurred about cal. A.D. 240 from the Ksudach volcano. This catastrophic explosive eruption was similar in type and characteristics to the 1883 Krakatau event. The volume of material ejected was 18–19 km3 (8 km3 DRE), including 15 km3 of tephra fall and 3–4 km3 of pyroclastic flows. The estimated height of eruptive column is 22–30 km. A collapse caldera resulting from this eruption was 4 × 6.5 km in size with a cavity volume of 6.5–7 km3. Tephra fall was deposited to the north of the volcano and reached more than 1000 km. Pyroclastic flows accompanied by ash-cloud pyroclastic surges extended out to 20 km. The eruption was initially phreatomagmatic and then became rhythmic, with each pulse evolving from pumice falls to pyroclastic flows. Erupted products were dominantly rhyodacite throughout the eruption. During the post-caldera stage, when the Shtyubel cone started to form within the caldera, basaltic-andesite and andesite magma began to effuse. The trigger for the eruption may have been an intrusion of mafic magma into the rhyodacite reservoir. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland ice sheet.  相似文献   

16.
A study of the historic record of activity of Piton de la Fournaise has revealed a cyclic pattern of eruption involving effusion of oceanite lava from major-flank centers every 20–40 years. Calculated volumes of the recent lava flows and pyroclastic ejecta have established an effusion rate of 3.9 m3 s−1 since 1931 and 6.2 m3 s−1 since 1951. Flank eruptions outside the present caldera define a distribution maximum which is expected to correlate with the depth range of a high-level magma reservoir.A model has been constructed which requires replenishment of a high-level magma chamber at a constant rate and regular eruption from summit and minor-flank centers, acting as “safety valves” to the magma chamber; when the magma chamber reaches its maximum expansion, a major-flank outburst of oceanitic lava occurs.The fact that calculated effusion rates are not consistent with radiometric dates implies an increase in effusion volume with time for the volcano.  相似文献   

17.
Young pumice deposits on Nisyros,Greece   总被引:1,自引:1,他引:1  
The island of Nisyros (Aegean Sea) consists of a silicic volcanic sequence upon a base of mafic-andesitic hyaloclastites, lava flows, and breccias. We distinguish two young silicic eruptive cycles each consisting of an explosive phase followed by effusions, and an older silicic complex with major pyroclastic deposits. The caldera that formed after the last plinian eruption is partially filled with dacitic domes. Each of the two youngest plinian pumice falls has an approximate DRE volume of 2–3 km3 and calculated eruption column heights of about 15–20 km. The youngest pumice unit is a fall-surge-flow-surge sequence. Laterally transitional fall and surge facies, as well as distinct polymodal grainsize distributions in the basal fall layer, indicate coeval deposition from a maintained plume and surges. Planar-bedded pumice units on top of the fall layer were deposited from high-energy, dry-steam propelled surges and grade laterally into cross-bedded, finegrained surge deposits. The change from a fall-to a surge/flow-dominated depositional regime coincided with a trend from low-temperature argillitic lithics to high-temperature, epidote-and diopside-bearing lithic clasts, indicating the break-up of a high-temperature geothermal reservoir after the plinian phase. The transition from a maintained plume to a surge/ash flow depositional regime occurred most likely during break-up of the high-temperature geothermal reservoir during chaotic caldera collapse. The upper surge units were possibly erupted through the newly formed ringfracture.  相似文献   

18.
The series of eruptions of June 15, 1991 at Mt. Pinatubo, Philippines were observed hourly by satellite. A giant discshaped cloud covering an area of 60,000 km2 appeared in the satellite images at 14:40, Philippine time. The cloud expanded radially against wind of 20 m/s and spread to an area of more than 120,000 km2 within an hour. According to eyewitness accounts there was heavy fine-ash fall after 14:00, intermittent lapilli fall started at about 14:20, and heavy and continuous lapilli fall widely started at about 15:00. The occurrence of the giant cloud roughly corresponded to the initiation of the intermittent lapilli fall.The air-fall deposits of the major eruption are widely distributed, including upwind from the vent. They are composed of 3 units; a silt-size fine-ash layer (Layer B), a lapilli layer commonly including pumice grains of > 1 cm in diameter (Layer C), a lapilli bearing volcanic sand layer (Layer D). Judging from its wide distribution and depletion of coarse, grains, most of the fine ash of Layer B is not distal deposits of a small eruption, but is originated from a large co-ignimbrite cloud. It is suggested that the major eruption started with the generation of a pyroclastic flow, which was subsequently followed by a plinian eruption resulting in the formation of the giant cloud and the lapilli fall.The results of calculations on the dynamics of eruption cloud indicate that the dimension and dynamics of the giant eruption cloud is accounted for by a plinian eruption with a magma discharge rate of the order of 109 kg/s.  相似文献   

19.
Volcán Huaynaputina is a group of four vents located at 16°36'S, 70°51'W in southern Peru that produced one of the largest eruptions of historical times when ~11 km3 of magma was erupted during the period 19 February to 6 March 1600. The main eruptive vents are located at 4200 m within an erosion-modified amphitheater of a significantly older stratovolcano. The eruption proceeded in three stages. Stage I was an ~20-h sustained plinian eruption on 19-20 February that produced an extensive dacite pumice fall deposit (magma volume ~2.6 km3). Throughout medial-distal and distal parts of the dispersal area, a fine-grained plinian ashfall unit overlies the pumice fall deposit. This very widespread ash (magma volume ~6.2 km3) has been recognized in Antarctic ice cores. A short period of quiescence allowed local erosion of the uppermost stage-I deposits and was followed by renewed but intermittent explosive activity between 22 and 26 February (stage II). This activity resulted in intercalated pyroclastic flow and pumice fall deposits (~1 km3). The flow deposits are valley confined, whereas associated co-ignimbrite ash fall is found overlying the plinian ash deposit. Following another period of quiescence, vulcanian-type explosions of stage III commenced on 28 February and produced crudely bedded ash, lapilli, and bombs of dense dacite (~1 km3). Activity ceased on 6 March. Compositions erupted are predominantly high-K dacites with a phenocryst assemblage of plagioclase>hornblende>biotite>Fe-Ti oxides-apatite. Major elements are broadly similar in all three stages, but there are a few important differences. Stage-I pumice has less evolved glass compositions (~73% SiO2), lower crystal contents (17-20%), lower density (1.0-1.3 g/cm3), and phase equilibria suggest higher temperature and volatile contents. Stage-II and stage-III juvenile clasts have more evolved glass (~76% SiO2) compositions, higher crystal contents (25-35%), higher densities (up to 2.2 g/cm3), and lower temperature and volatile contents. All juvenile clasts show mineralogical evidence for thermal disequilibrium. Inflections on a plot of log thickness vs area1/2 for the fall deposits suggest that the pumice fall and the plinian ash fall were dispersed under different conditions and may have been derived from different parts of the eruption column system. The ash appears to have been dispersed mainly from the uppermost parts of the umbrella cloud by upper-level winds, whereas the pumice fall may have been derived from the lower parts of the umbrella cloud and vertical part of the eruption column and transported by a lower-altitude wind field. Thickness half distances and clast half distances for the pumice fall deposit suggests a column neutral buoyancy height of 24-32 km and a total column height of 34-46 km. The estimated mass discharge rate for the ~20-h-long stage-I eruption is 2.4᎒8 kg/s and the volumetric discharge rate is ~3.6᎒5 m3/s. The pumice fall deposit has a dispersal index (Hildreth and Drake 1992) of 4.4, and its index of fragmentation is at least 89%, reflecting the dominant volume of fines produced. Of the 11 km3 total volume of dacite magma erupted in 1600, approximately 85% was evacuated during stage 1. The three main vents range in size from ~70 to ~400 m. Alignment of these vents and a late-stage dyke parallel to the NNW-SSE trend defined by older volcanics suggest that the eruption initiated along a fissure that developed along pre-existing weaknesses. During stage I this fissure evolved into a large flared vent, vent 2, with a diameter of approximately 400 m. This vent was active throughout stage II, at the end of which a dome was emplaced within it. During stage III this dome was eviscerated forming the youngest vent in the group, vent 3. A minor extra-amphitheater vent was produced during the final event of the eruptive sequence. Recharge may have induced magma to rise away from a deep zone of magma generation and storage. Subsequently, vesiculation in the rising magma batch, possibly enhanced by interaction with an ancient hydrothermal system, triggered and fueled the sustained Plinian eruption of stage I. A lower volatile content in the stage-II and stage-III magma led to transitional column behavior and pyroclastic flow generation in stage II. Continued magma uprise led to emplacement of a dome which was subsequently destroyed during stage III. No caldera collapse occurred because no shallow magma chamber developed beneath this volcano.  相似文献   

20.
The eruption of 1631 A.D. was the most violent and destructive event in the recent history of Vesuvius. More than fifty primary documents, written in either Italian or Latin, were critically examined, with preference given to the authors who eyewitnessed volcanic phenomena. The eruption started at 7 a.m. on December 16 with the formation of an eruptive column and was followed by block and lapilli fallout east and northeast of the volcano until 6 p.m. of the same day. At 10 a.m. on December 17, several nuées ardentes were observed to issue from the central crater, rapidly descending the flanks of the cone and devastating the villages at the foot of Vesuvius. In the night between the 16th and 17th and on the afternoon of the 17th, extensive lahars and floods, resulting from rainstorms, struck the radial valleys of the volcano as well as the plain north and northeast.Deposits of the eruption were identified in about 70 localities on top of an ubiquitous paleosol formed during a long preeruptive volcanic quiescence. The main tephra unit consists of a plinian fallout composed of moderately vesicular dark green lapilli, crystals and lithics. Isopachs of the fallout are elongated eastwards and permit a conservative volume calculation of 0.07 km3. The peak mass flux deduced from clast dispersal models is estimated in the range 3–6 × 107 kg/s, corresponding to a column height of 17–21 km. East of the volcano the plinian fallout is overlain by ash-rich low-grade ignimbrite, surges, phreatomagmatic ashes and mud flows. Ash flows occur in paleovalleys around the cone of Vesuvius but are lacking on the Somma side, suggesting that pyroclastic flows had not enough energy to overpass the caldera wall of Mt. Somma. Deposits are generally unconsolidated, massive with virtually no ground layer and occasionally bearing sparse rests of charred vegetation. Past interpretations of the products emitted on the morning of December 17 as lava flows are inconsistent with both field observations and historical data. Features of the final phreatomagmatic ashes are suggestive of alternating episodes of wet ash fallout and rainfalls. Lahars interfingered with primary ash fallout confirm episodes of massive remobilization of loose tephra by heavy rainfalls during the final stage of the eruption.Chemical analyses of scoria clasts suggest tapping of magma from a compositionally zoned reservoir. Leucite-bearing, tephritic-phonolite (SiO2 51.17%) erupted in the early plinian phase was in fact followed by darker and slightly more mafic magma richer in crystals (SiO2 49.36%). During the nuées ardentes phase the composition returned to that of the early phase of the eruption.The reconstruction of the 1631 eruptive scenario supplies new perspectives on the hazards related to plinian eruptions of Vesuvius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号