首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new self-similar solution describing the dynamical condensation of a radiative gas is investigated under a plane-parallel geometry. The dynamical condensation is caused by thermal instability. The solution is applicable to generic flow with a net cooling rate per unit volume and time  ∝ρ2 T α  , where  ρ,  T   and α are the density, temperature and a free parameter, respectively. Given α, a family of self-similar solutions with one parameter η is found in which the central density and pressure evolve as follows:  ρ( x = 0, t ) ∝ ( t c− t )−η/(2−α)  and   P ( x = 0, t ) ∝ ( t c− t )(1−η)/(1−α)  , where t c is the epoch at which the central density becomes infinite. For  η∼ 0  the solution describes the isochoric mode, whereas for  η∼ 1  the solution describes the isobaric mode. The self-similar solutions exist in the range between the two limits; that is, for  0 < η < 1  . No self-similar solution is found for  α > 1  . We compare the obtained self-similar solutions with the results of one-dimensional hydrodynamical simulations. In a converging flow, the results of the numerical simulations agree well with the self-similar solutions in the high-density limit. Our self-similar solutions are applicable to the formation of interstellar clouds (H  i clouds and molecular clouds) by thermal instability.  相似文献   

2.
The stability properties of magnetized discs rotating with angular velocity Ω = Ω( s ,  z ), dependent on both the radial and the vertical coordinates s and z , are considered. Such a rotation law is adequate for many astrophysical discs (e.g., galactic and protoplanetary discs, as well as accretion discs in binaries). In general, the angular velocity depends on height, even in thin accretion discs. A linear stability analysis is performed in the Boussinesq approximation, and the dispersion relation is obtained for short-wavelength perturbations. Any dependence of Ω on z can destabilize the flow. This concerns primarily small-scale perturbations for which the stabilizing effect of buoyancy is strongly suppressed due to the energy exchange with the surrounding plasma. For a weak magnetic field, instability of discs is mainly associated with vertical shear, whilst for an intermediate magnetic field the magnetic shear instability, first considered by Chandrasekhar and Velikhov, is more efficient. This instability is caused by the radial shear which is typically much stronger than the vertical shear. Therefore the growth time for the magnetic shear instability is much shorter than for the vertical shear instability. A relatively strong magnetic field can suppress both these instabilities. The vertical shear instability could be the source of turbulence in protoplanetary discs, where the conductivity is low.  相似文献   

3.
We study the vertical structure of the transition layer between an accretion disc and a corona in the context of the existence of a two-phase medium in thermally unstable regions. The disc is illuminated by hard X-ray radiation, and satisfies the condition of hydrostatic equilibrium. We take into account the energy exchange between the hot, Compton-heated corona (∼108 K) and cool disc (∼104 K) arising from both radiative processes and thermal conduction. In the case including thermal conduction, we perform a local stability analysis, and conclude that thermal conduction does not suppress thermal instability. In spite of the continuous temperature profile T ( τ ) there are regions of strong temperature gradient, in which spontaneous perturbations can lead to cloud condensation in the transition layer. We determine the minimum size λ TC of such a perturbation.  相似文献   

4.
The X-ray properties of a sample of 11 high-redshift  (0.6 < z < 1.0)  clusters observed with Chandra and/or XMM–Newton are used to investigate the evolution of the cluster scaling relations. The observed evolution in the normalization of the   L – T , M – T , M g– T   and M – L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the Universe at their redshift of observation. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L – T relation is consistent with the high- z clusters having virialized at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material.
The slope of the L – T relation at high redshift  ( B = 3.32 ± 0.37)  is consistent with the local relation, and significantly steeper than the self-similar prediction of   B = 2  . This suggests that the same non-gravitational processes are responsible for steepening the local and high- z relations, possibly occurring universally at   z ≳ 1  or in the early stages of the cluster formation, prior to their observation.
The properties of the intracluster medium at high redshift are found to be similar to those in the local Universe. The mean surface-brightness profile slope for the sample is  β= 0.66 ± 0.05  , the mean gas mass fractions within   R 2500( z )  and   R 200( z )  are  0.069 ± 0.012  and  0.11 ± 0.02  , respectively, and the mean metallicity of the sample is  0.28 ± 0.11 Z  .  相似文献   

5.
We numerically follow the nonlinear evolution of the Parker instability in the presence of phase transitions from a warm to a cold H  i interstellar medium in two spatial dimensions. The nonlinear evolution of the system favours modes that allow the magnetic field lines to cross the galactic plane. Cold H  i clouds form with typical masses  ≃105 M  , mean densities  ≃20 cm−3  , mean magnetic-field strengths  ≃4.3 μG  (rms field strengths  ≃6.4 μG  ), mass-to-flux ratios  ≃0.1–0.3  relative to critical, temperatures  ≃50 K  , (two-dimensional) turbulent velocity dispersions  ≃1.6 km s−1  and separations  ≃500 pc  , in agreement with observations. The maximum density and magnetic-field strength are  ≃103 cm−3  and  ≃20 μG  , respectively. Approximately 60 per cent of all H  i mass is in the warm neutral medium. The cold neutral medium is arranged into sheet-like structures both perpendicular and parallel to the galactic plane, but it is also found almost everywhere in the galactic plane, with the density being highest in valleys of the magnetic field lines. 'Cloudlets' also form whose physical properties are in quantitative agreement with those observed for such objects by Heiles. The nonlinear phase of the evolution takes ≲30 Myr, so that, if the instability is triggered by a nonlinear perturbation such as a spiral density shock wave, interstellar clouds can form within a time suggested by observations.  相似文献   

6.
Three independent observational studies have now detected a narrow  (Δ z ≃ 0.5)  dip centred at   z = 3.2  in the otherwise smooth redshift evolution of the Lyα forest effective optical depth. This feature has previously been interpreted as an indirect signature of rapid photoheating in the intergalactic medium (IGM) during the epoch of He  ii reionization. We examine this interpretation using a semi-analytic model of inhomogeneous He  ii reionization and high-resolution hydrodynamical simulations of the Lyα forest. We instead find that a rapid  (Δ z ≃ 0.2)  boost to the IGM temperature  (Δ T ≃ 104 K)  beginning at   z = 3.4  produces a well understood and generic evolution in the Lyα effective optical depth, where a sudden reduction in the opacity is followed by a gradual, monotonic recovery driven largely by adiabatic cooling in the low-density IGM. This behaviour is inconsistent with the narrow feature in the observational data. If photoheating during He  ii reionization is instead extended over several redshift units, as recent theoretical studies suggest, then the Lyα opacity will evolve smoothly with redshift. We conclude that the sharp dip observed in the Lyα forest effective optical depth is instead most likely due to a narrow peak in the hydrogen photoionization rate around   z = 3.2  , and suggest that it may arise from the modulation of either reprocessed radiation during He  ii reionization, or the opacity of Lyman limit systems.  相似文献   

7.
We present 1D numerical simulations of the very late thermal pulse (VLTP) scenario for a wide range of remnant masses. We show that by taking into account the different possible remnant masses, the observed evolution of V4334 Sgr (a.k.a. Sakurai's object) can be reproduced within the standard 1D mixing length theory (MLT) stellar evolutionary models without the inclusion of any ad hoc reduced mixing efficiency. Our simulations hint at a consistent picture with present observations of V4334 Sgr. From energetics, and within the standard MLT approach, we show that low-mass remnants  ( M ≲ 0.6 M)  are expected to behave markedly differently from higher mass remnants  ( M ≳ 0.6 M)  in the sense that the latter remnants are not expected to expand significantly as a result of the violent H-burning that takes place during the VLTP. We also assess the discrepancy in the born-again times obtained by different authors by comparing the energy that can be liberated by H-burning during the VLTP event.  相似文献   

8.
We report the discovery of an eclipsing polar, 2XMMi J225036.9+573154, using XMM–Newton . It was discovered by searching the light curves in the 2XMMi catalogue for objects showing X-ray variability. Its X-ray light curve shows a total eclipse of the white dwarf by the secondary star every 174 min. An extended pre-eclipse absorption dip is observed in soft X-rays at  φ= 0.8–0.9  , with evidence for a further dip in the soft X-ray light curve at  φ∼ 0.4  . Further, X-rays are seen from all orbital phases (apart from the eclipse) which make it unusual amongst eclipsing polars. We have identified the optical counterpart, which is faint  ( r = 21)  , and shows a deep eclipse (>3.5 mag in white light). Its X-ray spectrum does not show a distinct soft X-ray component which is seen in many, but not all, polars. Its optical spectrum shows Hα in emission for a fraction of the orbital period.  相似文献   

9.
10.
We present a linear analysis of the vertical structure and growth of the magnetorotational instability in stratified, weakly ionized accretion discs, such as protostellar and quiescent dwarf novae systems. The method includes the effects of the magnetic coupling, the conductivity regime of the fluid and the strength of the magnetic field, which is initially vertical. The conductivity is treated as a tensor and is assumed to be constant with height.
We obtained solutions for the structure and growth rate of global unstable modes for different conductivity regimes, strengths of the initial magnetic field and coupling between ionized and neutral components of the fluid. The envelopes of short-wavelength perturbations are determined by the action of competing local growth rates at different heights, driven by the vertical stratification of the disc. Ambipolar diffusion perturbations peak consistently higher above the midplane than modes including Hall conductivity. For weak coupling, perturbations including the Hall effect grow faster and act over a more extended cross-section of the disc than those obtained using the ambipolar diffusion approximation.
Finally, we derived an approximate criterion for when Hall diffusion determines the growth of the magnetorotational instability. This is satisfied over a wide range of radii in protostellar discs, reducing the extent of the magnetic 'dead zone'. Even if the magnetic coupling is weak, significant accretion may occur close to the midplane, rather than in the surface regions of weakly ionized discs.  相似文献   

11.
We examine the proposal that the H  i 'high-velocity' clouds (HVCs) surrounding the Milky Way and other disc galaxies form by condensation of the hot galactic corona via thermal instability. Under the assumption that the galactic corona is well represented by a non-rotating, stratified atmosphere, we find that for this formation mechanism to work the corona must have an almost perfectly flat entropy profile. In all other cases, the growth of thermal perturbations is suppressed by a combination of buoyancy and thermal conduction. Even if the entropy profile were nearly flat, cold clouds with sizes smaller than  10 kpc  could form in the corona of the Milky Way only at radii larger than  100 kpc  , in contradiction with the determined distances of the largest HVC complexes. Clouds with sizes of a few kpc can form in the inner halo only in low-mass systems. We conclude that unless even slow rotation qualitatively changes the dynamics of a corona, thermal instability is unlikely to be a viable mechanism for formation of cold clouds around disc galaxies.  相似文献   

12.
13.
We propose to explain the recent observations of gamma-ray burst early X-ray afterglows with SWIFT by the dissipation of energy in the reverse shock that crosses the ejecta as it is decelerated by the burst environment. We compute the evolution of the dissipated power and discuss the possibility that a fraction of it can be radiated in the X-ray range. We show that this reverse shock contribution behaves in a way very similar to the observed X-ray afterglows if the following two conditions are satisfied. (i) The Lorentz factor of the material which is ejected during the late stages of source activity decreases to small values  Γ < 10  and (ii) a large part of the shock-dissipated energy is transferred to a small fraction  (ζ≲ 10−2)  of the electron population. We also discuss how our results may help to solve some puzzling problems raised by multiwavelength early afterglow observations such as the presence of chromatic breaks.  相似文献   

14.
We describe some of the first X-ray detections of groups of galaxies at high redshifts  ( z ∼0.4)  , based on the UK deep X-ray survey of McHardy et al. Combined with other deep ROSAT X-ray surveys with nearly complete optical identifications, we investigate the X-ray evolution of these systems. We find no evidence for evolution of the X-ray luminosity function up to   z =0.5  at the low luminosities of groups of galaxies and poor clusters  ( L X≳1042.5 erg s-1)  , although the small sample size precludes very accurate measurements. This result confirms and extends to lower luminosities current results based on surveys at brighter X-ray fluxes. The evolution of the X-ray luminosity function of these low-luminosity systems is more sensitive to the thermal history of the intragroup medium (IGM) than to cosmological parameters. Energy injection into the IGM (from, for example, supernovae or active galactic nuclei winds) is required to explain the X-ray properties of nearby groups. The observed lack of evolution suggests that the energy injection occurred at redshifts   z >0.5  .  相似文献   

15.
We present the results of a 22.5 ks pointed ROSAT PSPC observation of the 3.4-h period eclipsing polar MN Hya (RX J0929.1−2404). The X-ray light curve exhibits a 'double-humped' shape, with a secondary minimum occuring at φ∼ 0.45, a morphology consistent with two-pole accretion. Strong aperiodic flaring activity, with flux enhancements of ∼ 6 × the quiescent level, is also observed. A pre-eclipse 'dip' occurs in the phase interval φ= 0.87–0.95 with the X-rays becoming harder, indicative of photoelectric absorption by the pre-shock flow. There is also evidence of a secondary spectrally hard 'dip' near φ = 0.45–0.55, which might be associated with a second accretion stream flowing to the other magnetic pole.   The X-ray spectrum is best represented by a combination of a ∼50 eV blackbody and a thermal bremsstrahlung component of kT 1.6 keV, with a total absorption column of N H  = 2.9 × 1020 cm−2.   The primary maximum (φ∼ 0.65) has a slightly larger column and normalization compared to the secondary maximum. Although there are few photons, the dip spectrum is very flat in comparison to other phases, and is best represented by a single bremsstrahlung component. This is indicative of the spectral hardening seen in the light curves attributed to photoabsorption. The ratio of unabsorbed bremsstrahlung and blackbody luminosities is ∼ 0.1 for the best-fitting average spectral models. This implies a magnetic field strength  30 MG on the basis of the empirical L hard/ L soft −  B relationships, although consideration of the cyclotron flux and aspect effects could allow for an even higher field (55 MG).  相似文献   

16.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

17.
Temporal properties of short gamma-ray bursts   总被引:1,自引:0,他引:1  
We analyse a sample of bright short bursts from the BATSE 4B-catalog and find that many short bursts are highly variable  ( δt min/ T ≪1  , where δt min is the shortest pulse duration and T is the burst duration). This indicates that it is unlikely that short bursts are produced by external shocks. We also analyse the available (first  1–2 s)  high-resolution Time Tagged Events (TTE) data of some of the long bursts. We find that variability on a 10-ms time-scale is common in long bursts. This result shows that some long bursts are even more variable than it was thought before  ( δt min/ T ≈10-4–10-3)  .  相似文献   

18.
The cosmological evolution of active galactic nuclei (AGN) is important for understanding the mechanism of accretion on to supermassive black holes and the related evolution of the host galaxy. In this work, we include objects with very low Eddington ratio  (10−3–10−2)  in an evolution scenario, and compare the results with the observed local distribution of black holes. We test several possibilities for the AGN population, considering obscuration and dependence with luminosity, and investigate the role of the Eddington ratio λ and radiative accretion efficiency ε on the shape of the evolved mass function. We find that three distinct populations of AGN can evolve with a wider parameter range than is usually considered, and still be consistent with the local mass function. In general, the black holes in our solutions are spinning rapidly. Taking fixed values for ε and λ neither provides a full knowledge of the evolution mechanism nor is consistent with the existence of low-Eddington-ratio objects.  相似文献   

19.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

20.
We describe similarity solutions that characterize the collapse of collisional gas on to scale-free perturbations in an Einstein–de Sitter universe. We consider the effects of radiative cooling and derive self-similar solutions under the assumption that the cooling function is a power law of density and temperature, Λ( T , ρ )∝ ρ 3/2 T . We use these results to test the ability of smooth particle hydrodynamics (SPH) techniques to follow the collapse and accretion of shocked, rapidly cooling gas in a cosmological context. Our SPH code reproduces the analytical results very well in cases that include or exclude radiative cooling. No substantial deviations from the predicted central mass accretion rates or from the temperature, density and velocity profiles are observed in well-resolved regions inside the shock radius. This test problem lends support to the reliability of SPH techniques to model the complex process of galaxy formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号