首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
长白山天池火山喷发序列研究   总被引:4,自引:0,他引:4  
长白山天池火山周边的11个钻孔资料揭示了长白山天池火山的喷发序列和岩浆演化过程.天池火山的喷发序列分为3个旋回:早期旋回喷发于上新世至早更新世,对应着周边地区的造高原喷发,天池火山熔岩盾主体开始形成,岩浆演化顺序是粗面玄武岩到粗面岩;中期旋回是早更新世的玄武岩浆演化到粗面岩和粗安岩(相当于小白山组);晚期旋回是从更新世到全新世,老房子小山组的玄武岩演化到白头山组粗面岩及碱流岩.在粗面质岩浆喷发过程中,有寄生火山的玄武质岩浆伴随喷发.全新世内天池火山千年大喷发主体由碱流质火山碎屑堆积物构成,松散堆积物的钻孔堆积层序表明,天池火山在全新世至少发生过两期巨型造伊格尼姆岩喷发.  相似文献   

2.
保存在陆地上的水下火山爆炸式喷发的地质记录非常少见,为揭示这一现象并探讨其全球意义,本文对中国东北饶河杂岩中的玄武质凝灰岩及枕状玄武岩进行了岩石学、地球化学以及年代学研究.玄武质凝灰岩由分选良好的晶屑(主要为单斜辉石)、玻屑和少量岩屑组成,具有较高的Mg O含量(15.7~15.9%),没有Eu的异常(Eu/Eu*=99~102).凝灰岩的锆石SHRIMP定年结果为(172±1)Ma,与前人报道的枕状玄武岩年龄接近.枕状玄武岩具有演化的Mg O含量以及弱的Eu负异常(Eu/Eu*=90~99).依据不活动微量元素判别,凝灰岩和玄武岩均属于碱性玄武岩,具洋岛型玄武岩配分特征以及一致的Nd同位素特征ε_(Nd)(t)=4.4~6.2,可能源自同一地幔源区.玄武岩的Sr同位素与Nd同位素耦合,而凝灰岩的~(87)Sr/~(86)Sr比值显著偏高并与同期海水相近,暗示地幔物质与海水之间的元素交换更可能发生于火山爆炸式喷发而非溢流式喷发.进一步计算表明,水下火山爆炸式喷发引起的高效率海水-地幔物质之间的Sr同位素交换可能是历史上全球海水Sr同位素比值快速下降的原因之一.  相似文献   

3.
大同地区玄武岩的岩石学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
大同盆地第四纪的火山可以划分为两部分:西北区(通常称大同火山群)和东南区。西北区的火山群属典型的中心式喷发,其玄武熔岩是碱性橄榄玄武岩。东南区的火山岩属裂隙式喷溢,其玄武岩流主要是由橄榄拉斑玄武岩组成。本文概括了这两个地区的玄武岩类在岩石学、地球化学、稀土和微量元素等方面的差别和各自的特点  相似文献   

4.
张北汉诺坝玄武岩的岩石磁学性质研究   总被引:6,自引:3,他引:6  
通过新河口汉诺坝玄武岩的综合岩石磁学测定和分析,确定了该剖面21个熔岩流的磁性矿物是以钛磁铁矿为主,部分含钛较高. 基于磁化率各向异性测定,推断张北汉诺坝玄武岩是由位于北东和北北西两个方向的古火山口喷发而成,这与野外观察一致. 这一结果对探讨火山喷发历史和地球深部过程是有意义的.  相似文献   

5.
长白山火山的历史与演化   总被引:3,自引:0,他引:3  
长白山火山跨越中朝两国,在我国境内包括天池火山、望天鹅火山、图们江火山和龙岗火山,火山活动从上新世持续到近代,是我国最大的第四纪火山分布区。长白山火山的母岩浆是钾质粗面玄武岩,将长白山火山岩区称钾质粗面玄武岩省,岩浆结晶分异作用和混合作用主导了岩浆演化过程。天池火山之下地壳岩浆房和地幔岩浆房具双动式喷发特点,一方面来自地幔的钾质粗厨玄武岩浆直接喷出地表;另一方面钾质粗面玄武岩浆持续补给地壳岩浆房,发生岩浆分离结晶作用和混合作用,导致双峰式火山岩分布特征和触发千年大喷发。西太平洋板块俯冲-东北亚大陆弧后引张是长白山火山活动的动力学机制。  相似文献   

6.
漳州—厦门地区新生代伸展构造兼论台湾海峡成因   总被引:1,自引:0,他引:1  
本文研究了漳州—厦门地区的新生代辉绿岩岩墙群、玄武岩喷发特征、盆地和地堑构造以及玄武岩中橄榄岩包体的流变学特征和断面擦痕应力场。研究发现,本区辉绿岩岩墙总体走向为北东 30°,玄武岩具有伸展构造环境下的喷发特征(伸展扩张方向为北西—南东),盆地和地堑主要受北东向的张扭性断层控制,橄榄岩包体的流变学特征与世界裂谷区和大陆拉张区的流变学特征一致,主压应力轴呈高角度近直立,主张应力轴为北西—南东方向。结合整个福建沿海和台湾海峡地质、地球物理资料分析,笔者认为,福建沿海及台湾海峡地区新生代以来处于伸展构造环境,伸展扩张方向为北西—南东方向,伸展幅度向台湾海峡增大,伸展扩张中心位于台湾海峡,台湾海峡为一新生代裂谷。  相似文献   

7.
《地球》2017,(11)
<正>1800万年前,激烈的地壳运动使得山东昌乐地区的火山喷发,炽热的岩浆滚滚喷涌而出,短短的时间内,大地的绿色被火红色覆盖。等到火山喷发停止时,黑灰色的玄武岩占据了这里。在此后千万年的沧海桑田中,玄武岩里孕育了美丽迷人的蓝宝石,当时的火山爆发也成就了昌乐现在令人称奇的自然景观——远古火山群。近日,国土资源部正式批复命名了山东昌乐火山国家地质公园。  相似文献   

8.
东北深源地震地质背景及其与内陆地震的相关活动   总被引:1,自引:0,他引:1  
东北陆缘带的深震群,其空间分布由与第四纪喷发的玄武岩桨相一致.活动时间上与华北、东北内陆构造地震具相关起伏活跃现象.  相似文献   

9.
福建龙海-漳浦沿海活动断裂与火山活动   总被引:5,自引:0,他引:5       下载免费PDF全文
文中通过福建龙海—漳浦沿海主要断裂的玄武岩喷发,断裂两侧第四纪以来形成的地貌面和海相地层的差异性变化等特点,分析了断裂晚第四纪以来的活动特征及断裂构造的组合特征。研究结果表明:龙海流会-漳浦将军澳断裂在新近纪—第四纪晚更新世早期 (N2—Q3p)有玄武岩多次循其喷发,晚更新世(Q3p)活动明显,属晚更新世活动断裂;龙海港尾 -漳浦湖西断裂亦属晚更新世(Q3p)活动断裂,断裂下盘上升速率为 1. 11mm/a。这 2条断裂将本区切割形成港尾地堑、南太武山地垒、流会-将军澳以东海域地堑  相似文献   

10.
熔积岩是岩浆与未固结的松软沉积物混合而生的一种特殊火山碎屑岩.它代表着岩浆活动与沉积作用的同期性,因此可以对岩浆喷发期内的沉积环境做出精确限定.在二叠纪塔里木大火成岩省西北缘印干-柯坪地区的早期喷发层序中首次发现熔积岩.其中,印干附近第二喷发期次层序中以淬冷开裂而形成的块状熔积岩为主,柯坪一带第二、第四喷发层序中则同时拥有块状熔积岩和流态熔积岩.上述熔积岩的宿主沉积物均为海相灰质,证明当时当地的岩浆喷发事件发生于陆表海相环境中.在距印干以东不远处的开派兹雷克剖面,同期层序中却只发育稳定的陆相溢流玄武岩而未见熔积岩,证明海陆环境在此发生了交互.在利用熔积岩确定三个剖面喷发环境的基础上,精确了塔里木大火成岩省西北缘喷发早期沉积环境的分布范围,及其随时间而发生变迁的详细过程.  相似文献   

11.
六棱山北麓断裂是山西地堑系北端张性构造区中的一条控制性断裂,总体走向北东东、倾向北北西,是一条至今仍在活动的倾滑正断裂,控制阳原盆地的形成和发展。在1993年和1994年的中日合作研究中,我们对断裂分段特征进行了研究,并用Auto-level仪器对这一条断裂晚第四纪不同时期的断错地貌面的位错量进行了测量,对这些地貌面的年龄进行了测定,得到该断裂带晚更新世晚期至全新世时期的平均垂直滑动速率为0.43~0.75mm/a。关键词  相似文献   

12.
A series of large hydrothermal eruptions occurred across the Waiotapu geothermal field at about the same (prehistoric) time as the ~AD1315 Kaharoa rhyolite magmatic eruptions from Tarawera volcano vents, 10–20 km distant. Triggering of the Waiotapu hydrothermal eruptions was previously attributed to displacement of the adjacent Ngapouri Fault. The Kaharoa rhyolite eruptions are now recognised as primed and triggered by multiple basalt intrusions beneath the Tarawera volcano. A ~1000 t/day pulse of CO2 gas is recorded by alteration mineralogy and fluid inclusions in drill core samples from Waiotapu geothermal wells. This CO2 pulse is most readily sourced from basalt intruded at depth, and although not precisely dated, it appears to be associated with the Waiotapu hydrothermal eruptions. We infer that the hydrothermal eruptions at Waiotapu were primed by intrusion of the same arrested basalt dike system that drove the rhyolite eruptions at Tarawera. This dike system was likely similar at depth to the dike that generated basalt eruptions from a 17 km-long fissure that formed across the Tarawera region in AD1886. Fault ruptures that occurred in the Waiotapu area in association with both the AD1886 and ~AD1315 eruptions are considered to be a result, rather than a cause, of the dike intrusion processes.Editorial responsibility: J. Donnelly-Nolan  相似文献   

13.
Geochemical data and mapping from a Karoo flood basalt crater complex reveals new information about the ascent and eruption of magma batches during the earliest phases of flood basalt volcanism. Flood basalt eruptions at Sterkspruit, South Africa began with emplacement of thin lava flows before abruptly switching to explosive phreatomagmatic and magmatic activity that formed a nest of craters, spatter and tuff rings and cones that collectively comprise a crater complex >40 km2 filled by 9–18 km3 of volcaniclastic debris. Rising magma flux rates combined with reduced access of magma to external water led to effusion of thick Karoo flood basalts, burying the crater-complex beneath the >1.5 km-thick Lesotho lava pile. Geochemical data is consistent with flood basalt effusion from local dikes, and some lava flows likely shared or re-occupied vent sites active during explosive eruptions at Sterkspruit. Flood basalt magmas involved in Sterkspruit eruptions were chemically heterogenous. This study documents the rapid (perhaps simultaneous) eruption of three chemically distinct basaltic magmas which cannot be simply related to one another from one vent site within the Sterkspruit crater complex. Stratigraphic and map relationships indicate that eruption of the same three magma types took place from closely spaced vents over a short time during formation of the bulk of the crater-complex. Two magma types recognized there have not been recognized in the Karoo province before. The variable composition of flood basalts at Sterkspruit argues that magma batches in flood basalt fields may be small (0.5–1 km3) and not simply related to one another. This implies in turn that heterogeneities in the magma source region may be close to each other in time and space, and that eruptions of chemically distinct magmas may take place over short intervals of space and time without significant hybridisation in flood basalt fields.  相似文献   

14.
内蒙古贝力克玄武岩台地火山地质及成因探讨   总被引:4,自引:0,他引:4       下载免费PDF全文
根据火山地质特征,内蒙古锡林郭勒地区的新生代玄武岩可以划分为阿巴嘎玄武岩、贝力克玄武岩和达里诺尔玄武岩,呈NW-SE向展布.贝力克玄武岩以面积小、没有火山锥体、岩性较为单一(绝大多数为拉斑玄武岩)及不含慢源包体的熔岩台地而显著区别于另两种玄武岩.贝力克玄武岩以发育4级高低错落有致、大小不一的熔岩台地为特征,各级熔岩台地...  相似文献   

15.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   

16.
中国东部广泛分布着新生代的玄武岩,其地质时代始终是一个争议的问题。本文作者对南京附近地区的两个标准玄武岩组剖面进行了古地磁学研究,使用交变场退磁法检验了样品,证明它们的剩磁稳定性良好,测得江宁方山玄武岩组的I,平均值为8.1×10-4CGSM,Dr=195°29′、Jr=-54°9′,古地磁南极位置为λP=192°35′E、ΦP=76°47′N;六合灵岩山玄武岩组的l,平均值为26.4×10-4CGSM,Dr=354°44′,Jr=42°12′,古地磁北极位置为λP=329°38′E、Φp=80°36′N,并得出如下结论: (1)六合灵岩山玄武岩组和江宁方山玄武岩组的极性截然不同,灵岩山玄武岩组的岩石磁性全系正向,可能相当于布容期(Brunhes epoch),方山玄武岩组的岩石磁性全属反向,可能相当于松山期(Matuyama epoch); (2)灵岩山玄武岩组测得的古北极相距现今的北极要比方山玄武岩组的近一些,清晰地表明它们的形成时间绝非同一时期,而是灵岩山玄武岩组要晚,方山玄武岩组要早; (3)灵岩山玄武岩组和方山玄武岩组形成时期的岩石产地所处的古纬度都是中纬度地区,属亚热带气候; (4)对比世界各地区一些有关时代的岩石古地磁学数据,参照这两套玄武岩组的上下地层中所含有的古生物化石及岩石学特征,六合灵岩山玄武岩组的地质时代似应为Q2-Q3,江宁方  相似文献   

17.
The Quaternary central volcano Longonot is situated on the floor of the Gregory Rift Valley, Kenya, at 0° 55 S, 36° 25 E. Although the majority of its products are lavas and pyroclastics of pantelleritic trachyte composition, small volumes of alkali basalt magma have been coerupted with pantelleritic trachyte magma to produce mixed lavas. These lavas were the first products following each of three caldera collapses and mark the start of three successive cycles of whole-rock chemical variation with time. For the first two mixed-lava eruptions identified, field, petrographic and mineralogical evidence suggests that the contrasting magmas comingled, and in places hybridized, during eruption. Whole-rock geochemistry requires the alkali basalt component to have been contaminated prior to coeruption with trachyte. Syenite is suggested as a possible contaminant of the basalt component in the last two mixed-lava eruptions. Field and whole-rock chemical evidence points to the trachyte magma chamber being underlain by a basalt magma root zone. Inputs of fresh basalt magma into the root zone may have initiated each pre-caldera pyroclastic event and subsequent caldera formation and may have also caused the trachyte magma to overturn and commence a fresh cycle of chemical evolution. Some of the hot, buoyant basalt magma was able to leak towards the surface up peripheral fractures where it was coerupted with the initial trachyte magma of each cycle.  相似文献   

18.
Newly identified ??a?? lava flows outcrop intermittently over an area of ~110?km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15?C25?m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound p??hoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ??a?? flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ??a?? lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound p??hoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ??a?? formation, or both. In this context, the ??a?? flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate p??hoehoe flow fields remains unclear.  相似文献   

19.
Magma plumbing system beneath Ontake Volcano, central Japan   总被引:2,自引:0,他引:2  
Ontake Volcano in central Japan was last active from ~ 100–35 Ka. The eruptions contained rhyodacite pumice and lavas in the first stage (stage O1, > 33 km3), followed by eruptions of andesite lavas and pyroclastics (stages O2 and O3, > 16 km3). Modeling of major and incompatible elements with Sr isotope ratios suggests that the primary magma was a high-alumina basalt. One andesite magma type appears to have evolved from the basalt in a closed system magma chamber, in part by fractional crystallization, and its generation included crustal assimilation. The other andesite magma type is considered to have evolved in an open system magma chamber in which repeated input of primary magma occurred together with wall-rock assimilation and fractional crystallization. The rhyodacite is inferred to have evolved in a closed system magma chamber by fractional crystallization of the second type of andesite. These genetic relationships require that the magma chamber functioned alternately as an open and a closed system. Geobarometry indicates that there may have been multiple magma chambers, located in the upper crust for the rhyodacite, near the upper–lower crust interface for the andesite and in the mid-lower crust for the basalt. These chambers were stacked to form the magma plumbing system of Ontake. Incompatible element compositions of the basalt are considered to have changed during the eruptions, suggesting that two different plumbing systems for stage O1 magma and for stages O2, O3 magmas existed during the 65 Ka of activity. Evolutionary history of the systems implies that the primary magma was introduced into the magma plumbing system each for ~ 17 500 years and that the life span of a magma plumbing system was shorter than 40 Ka.  相似文献   

20.
本文着重从物质分异的角度讨论了板块俯冲带及大陆地壳内某些地震成因机制问题。认为由于构造的活动和地球自转速度不均匀,在深大断裂带附近的上地幔或玄武岩层顶部容易产生分异的底辟构造。这种构造上隆引起的垂直作用力可促使地面产生同步隆起和侧翼相对下降,地震的震源往往位于底辟构造的侧翼或顶部。一般由底辟构造形成的垂直作用力与水平向区域构造应力场叠加成为一种叠加震源应力场。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号