首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Conquista chondrite consists of major olivine, low-Ca pyroxene (both ortho- and twinned clino-), troilite and metallic nickel-iron; minor glassy to microcrystalline material and pigeonite; and accessory chromite, high-Ca clinopyroxene and hydrous ferric oxides that formed by terrestrial weathering of metallic nickel-iron. Results of microscopic, electron microprobe, and bulk chemical studies, particularly the compositions of olivine (Fa17.2) and low-Ca pyroxene (Fs15.4); the contents of metallic nickel-iron (18.5%) and total iron (25.83%); and the ratios of Fe°/Fetotal (0.64), Fe°/Ni° (9.59) and Fetotal/SiO2 (0.69) indicate H-group classification. The pronounced, well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite, glassy to microcrystalline interstitial material rich in alkalis and SiO2, and of twinned low-Ca clinopyroxene suggest that Conquista is of petrologic type 4.  相似文献   

2.
The meteorite which fell near Messina, Italy, on 16 July 1955 is a typical olivine-hypersthene (L-group) chondrite. Its mineralogical composition is: olivine (Fa24), orthopyroxene (Fs20) with some polysynthetically twinned clynopyroxene, plagioclase (An10) and merrillite. Opaque phases present are: copper, kamacite, taenite, plessite, chalcopyrrhotite, mackinawite, troilite and chromite. The stone contains abundant chondrules. The matrix consists chiefly of broken chondrules with tiny fragments of crystals and rare amorphous material. Chondrules form more than 42% of the meteorite by volume. Some unusual features of the fabric of this meteorite include silicate grains showing deformation; silicates with fusion spots of dark glass containing blebs of metallic iron; iron and troilite with marginal fusion yielding globules and droplets sometimes showing flow structures. The classification of this chondrite is confirmed by bulk chemical analysis.  相似文献   

3.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

4.
The Ashmore olivine-bronzite chondrite is a group H, type 5 stone which differs from other H5 chondrites mainly in its higher proportion of chromite (0.9 wt %) and in the relatively lower iron and higher magnesium content of the chromite. The modal proportions of opaque phases were obtained by point-counting in reflected light, and the modal proportions of nonopaque silicate phases in the matrix were estimated from traverses of a selected small area by electron microprobe. The consistency between the bulk chemical analysis and the chemical composition calculated from the modal mineral proportions implies that the bulk silicate composition of the chondrules is very similar to that of the silicate matrix and suggests a common source for both chondrules and matrix.  相似文献   

5.
Yilmia, a new enstatite chondrite contains moderately well defined radiating and granular chondrules. The plagioclase to enstatite ratio is appreciably higher within than outside of the two granular chondrules in our microprobe sections. Osbornite was observed within the granular chondrules, but not in the rayed chondrules or surrounding matrix Major phases include enstatite, plagioclase (Ab80 An16 Or4), silica, silicon-rich kamacite and titanian troilite. Minor phases are many and varied: sinoite, silicon-rich taenite, schreibersite, graphite, osbornite, oldhamite, “normal” and zincian daubreelite, ferroan alabandite and a new FeZnMn monosulfide The new mineral (Fe.538 Zn.246 Mn.159 Mg.004 S) closely resembles albandite and could easily have been overlooked in other meteorites unless a microprobe was used. A new form of oldhamite was also found. Indarch oldhamite, analyzed for comparative purposes, consists of two similar but distinct species: Ca.96 Mn.005 Mg.04 Fe.01 S and Ca1.000 Mn.004 Mg.02 Fe.005 S. These have not been reported from other meteorites Based on its mineralogy and texture this is a type II (E6) enstatite chondrite that is transitional toward the intermediate type (E5). It is unique in its mineralogical complexity, abundance of taenite, diversity of zincian minerals and monosulfides, and restriction of osbornite to certain chondrules  相似文献   

6.
The Kyle, Texas, U.S.A., chondrite was identified in 1965. Electron microprobe analyses and microscopic examination show the following mineralogy: olivine (Fa 26.2 mole %), orthopyroxene (Fs 21.0 mole %), clinopyroxene, plagioclase (An 10.3 mole %), chlorapatite, whitlockite, kamacite, taenite, troilite, chromite, and an iron-bearing terrestrial weathering product. Eutectic intergrowths of metaltroilite and a brecciated matrix indicate that the Kyle chondrite was shocked. Recrystallization and shock have obliterated chondrule-matrix boundaries. A chemical analysis of the meteorite shows the following results (in weight %): Fe 0.38, Ni 1.22, Co 0.05, FeS 5.98, SiO2 38.41, TiO2 0.11, Al2O3 2.13, Cr2O3 0.55, Fe2O3 8.02, FeO 14.83, MnO 0.31, MgO 23.10, CaO 1.60, Na2O 0.74, K2O 0.08, P2O5 0.19, H2O+ 1.73, H2O? 0.37, C 0.03, Sum 99.83. On the basis of bulk chemistry, composition of olivine and orthopyroxene, and the recrystallized matrix, the Kyle meteorite is classified as an L6 chondrite.  相似文献   

7.
Rock 12039 belongs to the olivine-depleted group of magmatic rocks characterized by normative and modal SiO2, absence or very low abundance of olivine, and high FeO/(FeO + MgO), Ti/Cr, and CaO/MgO ratios. Clinopyroxenes in this rock show a complex, essentially continuous, compositional zonation from augite cores through ferroaugite to ferrohedenbergite with an abrupt discontinuity at the pyroxferroite contact and, thus, are different from pyroxene in most other Apollo 12 rocks. Two grains contain thin subcalcic pigeonite zones. Texture, presence of very fine (< 1 μm) exsolution lamallae, and pyroxene zoning indicate a relatively rapid cooling history and pronounced in situ chemical fractionation. Rock 12039, on the basis of mineralogy and bulk composition, is the most highly differentiated member of the olivine-depleted basalt group  相似文献   

8.
A chemical analysis and a mineralogical inspection have been performed on about 50 g of the Mafra, Santa Catarina State, Brazil, meteorite. The stone is an H-4 chondrite. It shows some ambiguous characteristics concerning the iron distribution, which are discussed.  相似文献   

9.
The fall occurred near Piancaldoli, Florence, Italy, at 19.14 U.T. on the 10th August 1968. The fireball broke up in the atmosphere producing a cloud like a balloon. The trajectory and the terminal point were calculated, leading to the recovery of three small meteoritic fragments, found on the roof of a house. Chemical analysis gave the following results: SiO2 40.80; TiO2 0.15; Al2O3 2. 70; Cr2O3 0.47; FeO 17.20; MnO 0.07; MgO 25.18; CaO 1.95; Na2O 0.64; K2O 0.07; P2O5 0.20; NiS 0.93; FeS 6.24; Fe° 2.40; Ni° 0.40; Co 0.05; sum 99.45. In the lithic portion of the meteorite the following minerals were found: both clino and orthopyroxenes (En = 76 to 98%), olivines (Fo = 66 to 98%), troilite, pyrrhotite, pentlandite, kamacite, ilmenite, apatite, merillite, schreibersite, chromite and Henderson phase. From all the mineralogical and petrological data, we conclude that the Piancaldoli meteorite is an “unequilibrated ordinary chondrite,” LL3. The microbrecciated structure of the rock and some shock features were observed, while the rock as a whole is unshocked, suggesting that these features were caused by impact events which took place during the accretion of the parent body.  相似文献   

10.
A total chemical analysis of the Isna, Egypt, meteorite is similar to analyses for chondrites of type C3, Ornans sub-type; however, comparison with one group of chemical data indicates that Isna is intermediate between the C3(O)'s and C3(V)'s in terms of total Fe. On the basis of atom ratios of Fe, Ca, Al, and Ti to Si, Isna can also be placed into a chemical group which includes types C1 and C2, as well as C3(O). Thin sections show a variety of small, closely-packed chondrules, fragments, and aggregate-like masses in a poorly translucent matrix. Olivine + clinoenstatite inclusions rich in metal and troilite, and olivine-rich inclusions are abundant and show evidence of shock. Ca-Al-Ti-rich inclusions, of probable high-temperature origin, contain olivine, spinel, Ca-rich nepheline, gehlenite, diopside, augite, enstatite, and anorthite. Kamacite and taenite from various occurrences in the meteorite have rather uniform Ni and Co contents, and Ni/Co for kamacite is close to that for several C3(O)'s.  相似文献   

11.
The Kamiomi, Sashima-gun (Iwai-shi), Ibaraki-ken, Japan, chondrite (observed to fall in spring, during the period 1913–6), consists of olivine, orthopyroxene, nickel-iron and troilite with minor amount of plagioclase, clinopyroxene, apatite and chromite. The average molar composition of olivine (Fa19) and orthopyroxene (Fs17) indicates that Kamiomi is a typical olivine bronzite chondrite. From the well-recrystallized texture, the presence of poorly-definable chondrules, homogeneous composition of olivine and absence of glass, this chondrite could be classified in petrologic type 5. The bulk chemical composition, especially, total Fe (27.33%) and metallic Fe (17.00%) as well as Fetotal/SiO2(0.72), Femetal/Fetotal (0–633) and SiO2/MgO (1.59) support the above conclusion. Coexistence of heavily-shocked olivine grains in the matrix composed of olivines and pyroxenes which suffered from light to moderate shock effect suggest that impacting phenomena, small-scaled but locally strong, occurred on the Kamiomi parent body.  相似文献   

12.
Microscopic and electron microprobe studies indicate that the Garraf meteorite is a highly-recrystallized chondrite of petrologic type 6. Olivine (Fa24.7; PMD 1.1) and low-Ca pyroxene (Fs20.9; PMD 1.1) compositions indicate that it belongs to the L-group. Based on contents of noble gases, pervasive fracturing of silicates, common undulose extinction of olivine and plagioclase, and the lack of melt pockets and maskelynite, we place Garraf into shock facies b. We conclude that Garraf is a highly recrystallized L6b chondrite that, after recrystallization, was cataclased and comminuted by shock.  相似文献   

13.
The Alta'ameem hypersthene chondrite is a light gray brecciated and metamorphosed meteorite composed mainly of olivine (27% Fa), orthopyroxene (24.5% Fs) and plagioclase (An10). Other minerals include troilite, kamacite, taenite, chromite, ilmenite, clinopyroxene, chalcopyrite, and apatite or merrillite. The mineralogical and chemical analyses suggest that the Alta'ameem meteorite belongs to the amphoterite group of chondrites. The chemical composition includes the following: Fe 3.39, Ni 1.13, Co 0.05, Cu 0.01, FeS 6.48, SiO2 39.48, TiO2 0.28, Al2O3 2.25, FeO 16.46, MnO 0.40, MgO 25.66, CaO 1.47, Na2O 1.05, K2O 0.15, P2O5 0.47, Cr2O3 0.45; total 99.18.  相似文献   

14.
The Homewood meteorite is a slightly weathered find of 325 grams discovered in 1970 about 64 km southwest of Winnipeg, Manitoba. It consists of olivine (Fa25.4; 43.8 normative wt. percent), orthopyroxene (Fs23.3; 28.5 percent), kamacite and taenite (7.5 percent), troilite (5.6 percent), maskelynite (8.3 percent), chromite (1.0 percent), whitlockite (0.7 percent) and minor patchy Ca pyroxene. Bulk chemical analysis yielded Fetotal 21.60 wt. percent, Fe/SiO20.55, SiO2/MgO 1.53 and FeO/Fetotal 0.29. Barred olivine, radiating pyroxene and porphyritic chondrules, all with ill-defined outlines, occur in the meteorite. Most chemical and mineralogical features characterize the Homewood meteorite as an L6 (hypersthene) chondrite. The presence of maskelynite, the undulatory extinction, extensive fracturing and pervasive mosaicism of olivine, and the poor definition of chondrule outlines suggest that the Homewood meteorite has been shocked in the range of 300–350 kbar.  相似文献   

15.
The Oro Grande, New Mexico, U.S.A., chondrite was found in 1971. Electron microprobe analyses and microscopic examination show the following mineralogy: olivine (Fa 19.3 mole percent), orthopyroxene (Fs 16.2 mole percent), diopside, feldspar (An 13.6 mole percent), chlorapatite, whitlockite, kamacite, taenite, troilite, chromite, and an iron-bearing terrestrial weathering product. A bulk chemical analysis of the meteorite shows the following results (weight percent): Fe 0.84, Ni 1.46, Co 0.07, FeS 3.62, SiO2 34.18, TiO2 0.14, Al2O3 1.83, Cr2O3 0.55, Fe2O3 21.25, FeO 9.13, MnO 0.31, MgO 21.52, CaO 1.72, Na2O 0.70, K2O 0.08, P2O5 0.25, H2O+ 2.14, H2O- 0.40, C 0.22, Sum 100.41. On the basis of composition and texture, the Oro Grande meteorite is classified as an H5 chondrite. A large lithic fragment (~5 mm long) with a very fine-grained texture different from that of the host meteorite was analyzed for bulk composition using the broad beam of an electron microprobe, and was found to be enriched in Ca, Al, Na, and K, and depleted in Mg and Fe relative to the bulk composition of the host meteorite. Its mineral compositions, however, are very similar to those of the host. It is suggested that the fragment is not a xenolith of a previously undescribed type of achondrite, but is probably an impact-produced partial melt of the host chondrite or a fragment of an unusually large chondrule.  相似文献   

16.
This paper discusses measured textures, porosity, chemical compositions and the minerals of interplanetary dust and meteorites from primitive planetesimals and how this information can be used to explain some of the observed physical and chemical properties of meteor phenomena.  相似文献   

17.
The Weston meteorite is a breccia containing mostly light-colored equilibrated chondritic xenoliths and less abundant highly un-equilibrated chondritic inclusions fixed in a dark grey host of chondrules, mineral and rock fragments. Many of the inclusions show evidence of shock. Unlike most xenolithic chondrites, the Weston host contains a large fraction of considerably more equilibrated silicates than is found in the unequilibrated inclusions, suggesting either that most host silicates retain the mineral chemistry of an equilibrated source indigenous to Weston, or represent a unique fraction which equilibrated separately, prior to final agglomeration. The host silicates are similar in composition to minerals in the common xenoliths, supporting the former possibility that host chondrules and mineral fragments are derived from the xenolithic material, probably by impact fragmentation and melting. Also mixed with Weston is a small but distinct carbonaceous component including the minerals fassaite, Fespinel, forsterite, magnetite and Ca-Al-rich inclusion which are normally associated with carbonaceous chondrites.  相似文献   

18.
The principal data are collected about the fall and the distribution of the fragments of the Valdinizza, Italy, meteorite. A complete individual, weighing 872 g, preserved in the United States National Museum, Washington, D. C., is described in some detail. The mineralogical composition is olivine, Fa25; hypersthene, Fs23; plagioclase, An10; maskelynite; nickel-iron; troilite; chromite; ilmenite and possibly a phosphate mineral. Valdinizza is a fairly typical hypersthene chondrite, belonging to the type 6 chondrites of Van Schmus and Wood (1967); its structure shows evidence of a period of high-temperature recrystallization; interesting features of shock-metamorphism are notable, the microtexture deformations suggesting a high level of stress  相似文献   

19.
Pieces of high-silica, natural glass (Libyan Desert Glass), found on the desert surface of western Egypt, have been treated as an enigma for 50 years although it is virtually certain they are similar to tektites in being impact-derived products. New major element analyses of four Libyan Desert Glass specimens agree extremely well with the only other recent analysis and demonstrate that the original bulk analyses reported by Spencer (1939) are in error. The five modern analyses define a very tight chemical range for SiO2 (97.38–98.25 wt %), Al2O3 (1.16–2.26 wt %), total Fe (0.15–0.60 wt % as Fe2O3) and TiO2 (0.13–0.19 wt %). Measurable MgO (0.04–0.20 wt %) was found in one specimen. No other elements are present in greater than trace amounts. Microprobe analyses show that Al, Fe and Ti are all positively correlated with one another and are almost ubiquitously distributed throughout the glass. They must also have been so distributed in the LDG precursor material as mechanical mixing and elemental diffusion in the short-lived melt were limited. In contrast, Mg is sharply restricted in occurrence and correlates only with Fe, strongly suggesting a precursor Mg-Fe oxide or silicate mineral present as rare, discrete grains. Aside from rare accessory minerals, the parent material was a sand or sandstone composed of quartz grains coated with a mixture of kaolinite, hematite and anatase. This conclusion is based solely on the elemental distribution in the glass but is buttressed by the occurrence of both sand and sandstone, in southwestern Egypt, with the requisite mineralogy. However, mineralogic identity need not, in general, translate to a chemical match and it is entirely possible that the specific sand or sandstone facies involved in the glass formation no longer exists after 28 million years. Consequently, it may well be that evidence other than chemical comparisons will be needed to identify the presently unknown parent crater.  相似文献   

20.
In April 1969, the chondrite was accidentally found in the side wall of the vegetable storage excavated at Shibayama-machi, Sanbu-gun, Chiba-ken, Japan, by Mr. A. Ishii and his grandson, Mr. S. Ito. The chondrite named Shibayama has been weathered thoroughly for a long period of burial underground. The bulk chemical composition, especially total Fe (21.41%) and ratios of Fetotal/SiO2(0.557), SiO2/MgO (1.59) and molar composition of olivine (Fa23) and pyroxene (Fs22) as well as mineral composition, indicate that Shibayama is a typical olivine-hypersthene chondrite. If the oxidized Fe is assumed only from metallic Fe, the original metallic Fe (7.75%) and Femetal/Fetotal(0.361) also support the above conclusion. From the well-recrystallized texture, indistinct and obliterated chondrule-matrix boundary, homogeneous composition of olivine and pyroxene, absence of igneous glass, and interstitial and well-developed plagioclase, this chondrite could be classified in petrologic type 6. Mosaic texture, kink bands, undulatory extinction of silicate grains and maskelynitization of plagioclase indicate that Shibayama suffered from a heavy shock effect, as is seen in other L-6 group chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号