首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Conquista chondrite consists of major olivine, low-Ca pyroxene (both ortho- and twinned clino-), troilite and metallic nickel-iron; minor glassy to microcrystalline material and pigeonite; and accessory chromite, high-Ca clinopyroxene and hydrous ferric oxides that formed by terrestrial weathering of metallic nickel-iron. Results of microscopic, electron microprobe, and bulk chemical studies, particularly the compositions of olivine (Fa17.2) and low-Ca pyroxene (Fs15.4); the contents of metallic nickel-iron (18.5%) and total iron (25.83%); and the ratios of Fe°/Fetotal (0.64), Fe°/Ni° (9.59) and Fetotal/SiO2 (0.69) indicate H-group classification. The pronounced, well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite, glassy to microcrystalline interstitial material rich in alkalis and SiO2, and of twinned low-Ca clinopyroxene suggest that Conquista is of petrologic type 4.  相似文献   

2.
The Putinga, Rio Grande do Sul, chondrite (fall, August 16, 1937), consists of major olivine (Fa24.8), orthopyroxene (Fs21.3), and metallic nickel-iron (kamacite, taenite, and plessite); minor maskelynite (Ab81.0An12.4Or6.6) and troilite; and accessory chromite (Cm79.0Uv8.2Pc1.8Sp11.0) and whitlockite. Mineral compositions, particularly of olivine and orthorhombic pyroxene, as well as the bulk chemical composition, particularly the ratios of Fe°/Ni° (5.24), Fetotal/SiO2 (0.58), and Fe°/Fetotal (0.27), and the contents of Fetotal (22.42%) and total metallic nickel-iron (7.25%) classify the meteorite as an L-group chondrite. The highly recrystallized texture of the stone, with well-indurated, poorly discernible chondrules; xenomorphic, well-crystallized groundmass olivine and pyroxene; and the occurrence of poikilitic intergrowth of olivine in orthopyroxene suggest that Putinga belongs to petrologic type 6. Maskelynite of oligoclase composition was formed by solid state shock transformation of previously existing well-crystallized plagioclase at estimated shock pressures of about 250–350 kbar. Thus, recrystallization (i.e., formation of well-crystallized oligoclase) must have preceded shock transformation into maskelynite.  相似文献   

3.
The mineralogical and chemical compositions of meteorites from the Motta di Conti, Vercelli, Italy, shower (February 29, 1868) have been determined. Microprobe analyses, of olivine (Fa19,6) and orthopyroxene (Fs17,8), as well as the bulk chemical composition, particularly the ratios of SiO2/MgO (1.50), Fe°/Ni° (11.03), Fetotal/SiO2 (0.81), Fe°/Fetotal (0.70) and the content of Fetotal (28.60%) classify the meteorite as an H-group chondrite. The percentage of total metallic nickel-iron (22.06%) is somewhat higher than the average in H-group chondrites. The texture of our stone shows evidence of metamorphism. The integration between matrix and chondrules is advanced and may suggest a high petrographic grade, but the identification of several microscopic features (e.g. small grains of monoclinic twinned pyroxene, FeNi-FeS intergrowths, globules and mosaic) leads to the conclusion that a variety of petrographic types (4–6) are present. Metamorphic equilibration in chondrites is discussed and a preliminary hypothesis for H4–6 chondrites is suggested.  相似文献   

4.
In April 1969, the chondrite was accidentally found in the side wall of the vegetable storage excavated at Shibayama-machi, Sanbu-gun, Chiba-ken, Japan, by Mr. A. Ishii and his grandson, Mr. S. Ito. The chondrite named Shibayama has been weathered thoroughly for a long period of burial underground. The bulk chemical composition, especially total Fe (21.41%) and ratios of Fetotal/SiO2(0.557), SiO2/MgO (1.59) and molar composition of olivine (Fa23) and pyroxene (Fs22) as well as mineral composition, indicate that Shibayama is a typical olivine-hypersthene chondrite. If the oxidized Fe is assumed only from metallic Fe, the original metallic Fe (7.75%) and Femetal/Fetotal(0.361) also support the above conclusion. From the well-recrystallized texture, indistinct and obliterated chondrule-matrix boundary, homogeneous composition of olivine and pyroxene, absence of igneous glass, and interstitial and well-developed plagioclase, this chondrite could be classified in petrologic type 6. Mosaic texture, kink bands, undulatory extinction of silicate grains and maskelynitization of plagioclase indicate that Shibayama suffered from a heavy shock effect, as is seen in other L-6 group chondrites.  相似文献   

5.
The Kramer Creek, Colorado, chondrite was found in 1966 and identified as a meteorite in 1972. Bulk chemical analysis, particularly the total iron content (20.36%) and the ratio of Fetotal/SiO2 (0.52), as well as the compositions of olivine (Fa21.7) and orthopyroxene (Fs18.3) place the meteorite into the L-group of chondrites. The well-defined chondritic texture of the meteorite, the presence of igneous glass in the chondrules and of low-Ca clinopyroxene, as well as the slight variations in FeO contents of olivine (2.4% MD) and orthopyroxene (5.6% MD) indicate that the chondrite belongs to the type 4 petrologic class.  相似文献   

6.
The Kamiomi, Sashima-gun (Iwai-shi), Ibaraki-ken, Japan, chondrite (observed to fall in spring, during the period 1913–6), consists of olivine, orthopyroxene, nickel-iron and troilite with minor amount of plagioclase, clinopyroxene, apatite and chromite. The average molar composition of olivine (Fa19) and orthopyroxene (Fs17) indicates that Kamiomi is a typical olivine bronzite chondrite. From the well-recrystallized texture, the presence of poorly-definable chondrules, homogeneous composition of olivine and absence of glass, this chondrite could be classified in petrologic type 5. The bulk chemical composition, especially, total Fe (27.33%) and metallic Fe (17.00%) as well as Fetotal/SiO2(0.72), Femetal/Fetotal (0–633) and SiO2/MgO (1.59) support the above conclusion. Coexistence of heavily-shocked olivine grains in the matrix composed of olivines and pyroxenes which suffered from light to moderate shock effect suggest that impacting phenomena, small-scaled but locally strong, occurred on the Kamiomi parent body.  相似文献   

7.
The Homewood meteorite is a slightly weathered find of 325 grams discovered in 1970 about 64 km southwest of Winnipeg, Manitoba. It consists of olivine (Fa25.4; 43.8 normative wt. percent), orthopyroxene (Fs23.3; 28.5 percent), kamacite and taenite (7.5 percent), troilite (5.6 percent), maskelynite (8.3 percent), chromite (1.0 percent), whitlockite (0.7 percent) and minor patchy Ca pyroxene. Bulk chemical analysis yielded Fetotal 21.60 wt. percent, Fe/SiO20.55, SiO2/MgO 1.53 and FeO/Fetotal 0.29. Barred olivine, radiating pyroxene and porphyritic chondrules, all with ill-defined outlines, occur in the meteorite. Most chemical and mineralogical features characterize the Homewood meteorite as an L6 (hypersthene) chondrite. The presence of maskelynite, the undulatory extinction, extensive fracturing and pervasive mosaicism of olivine, and the poor definition of chondrule outlines suggest that the Homewood meteorite has been shocked in the range of 300–350 kbar.  相似文献   

8.
Abstract We report a new chondrite that fell in Hashima City in central Japan sometime during the period 1868–1912. The chondrite weighs 1110.64 g and exhibits distinct chondritic structure. Chondrules occupy 24 vol% of the stone and consist of olivine (average Fa17,8), low-Ca pyroxene (average Fs15,8 Wo0.9), devitrified glass and lesser amounts of oligoclase (ca. Ab80Or4), kamacite, taenite, troilite and chromian spinel. Matrix occupying 76 vol% of the stone consists of olivine, low-Ca pyroxene, kamacite, taenite, troilite, cryptocrystalline minerals and lesser amounts of chromian spinel and chlorapatite. Matrix minerals have the same compositions as those in chondrules. Mineral chemistry, bulk chemistry and magnetic properties indicate that Hashima is an H-group chondrite. Well-defined chondrules, scarcely recrystallized oligoclase and relatively small variations of olivine and low-Ca pyroxene compositions indicate that Hashima is of petrologic type 4.  相似文献   

9.
In the summer of 1984, two meteorites fell in the northern part of Honshu, Japan; Aomori, at 1:50 p.m. on June 30, and Tomiya, at 1:35 p.m. on August 22. Coordinates of the falls of the Aomori and the Tomiya are at 140°47.1'E., 40°48.6'N., and 140°51.9'E., 38°22.0'N., respectively. Results of chemical analyses of major elements, ratios of Fetotal/SiO2 (0.546 and 0.803) and Femetal/Fetotal (0.332 and 0.581), and molar compositions of olivines (Fa25 and Fa19) indicate that the Aomori and the Tomiya are typical L- and H-group ordinary chondrites, respectively. In the Aomori, chondrules are present as relicts in the well-recrystallized matrix. Olivine and pyroxene are homogeneous in composition, and coarse clear feldspar, up to 100 micrometers in size, is well developed in the chondrules and matrix. Though the Aomori is a petrologic type 6 based on its texture and mineralogy, it includes a few grains of multiple twinned clinobronzite which is rarely observed in highly equilibrated ordinary chondrites. In the Tomiya, chondrules possess a fine-grained mesostasis, and both orthopyroxene and clinobronzite are noticeable in thin sections. Plagioclase is mostly microcrystalline, but is also sparsely present as tiny, visible grains. Thus, the Tomiya was classified to be petrologic type between 4 and 5. The deformation texture of olivine, pyroxene and plagioclase indicates that both meteorites were shocked by 0.2-0.25 Mb. In conjunction with the discussion of the frequency of meteorite-falls, all observed falls of meteorites in Japan are tabulated in this paper.  相似文献   

10.
The Ragland, New Mexico chondrite was found in 1978, and consists of a single stone of 12.16 kg that broke into three pieces. The stone is moderately weathered and has a pronounced chondritic texture. Bulk composition favors an LL classification, and modal analysis and oxygen isotopic composition are consistent with this. The thermoluminescence sensitivity of 0.056 ± 0.020 normalized to Dhajala, compositional variability of olivine (mean Fa 18.3, σ = 10.1) and low-Ca pyroxene (mean Fs 14.6, σ = 6.7), and Ca concentrations in olivine indicate metamorphic subtype 3.4 ± 0.1. The isotopically heavy oxygen composition, which is characteristic of subtypes 3.0–3.1, may be a primary characteristic and not a result of weathering. Low concentrations of radiogenic 40Ar and planetary 36Ar suggest noble gas loss.  相似文献   

11.
Abstract— We present a new single‐crystal X‐ray diffraction (XRD) study performed on a suite of six orthopyroxene grains from the low‐shocked H6 Trenzano meteorite. The quenched intracrystalline Fe2+‐Mg ordering state in orthopyroxene preserves the memory of the cooling rate near closure temperature Tc, thus yielding useful constraints on the last thermal event undergone by the host rock. The orthopyroxene Tc of 522 ± 13 °C, calculated using a new calibration equation obtained by Stimpfl (2005b), is higher than in previously published H chondrite data. The orthopyroxene cooling rate at this Tc is about 100 °C/kyr. This fast rate is inconsistent with the much slower cooling rate expected for H6 in the onion shell structural and thermal model of chondrite parent bodies. A petrographic study carried out at the same time indicated that the Trenzano meteorite is an H5 chondrite and not an H6 chondrite, as it is officially classified. Furthermore, the two‐pyroxene equilibrium temperature of Trenzano (824 ± 24 °C), calculated with QUILF95, is similar to the two‐pyroxene temperature of 750–840 °C obtained for the Carcote (H5) chondrite (Kleinschrot and Okrusch 1999).  相似文献   

12.
13.
The Colony meteorite is an accretionary breccia containing several millimeter-to centimeter-size chondritic clasts embedded in a chondritic host. Colony is one of the least equilibrated CO3 chondrites; it has an unrecrystallized texture and contains compositionally heterogeneous olivine and low-Ca pyroxene, kamacite with low Ni and Co and high Cr, amoeboid inclusions with low FeO and MnO, a fine-grained silicate matrix with very high FeO, and numerous small chondrules with clear pink glass. However, Colony differs from normal CO chondrites in several respects: Although Al, Sc, V, Cr, Ir, Fe, Au and Ga abundances are consistent with a CO chondrite classification, certain lithophiles (Mg and Mn), siderophiles (Ni and Co) and chalcophiles (Se and Zn) are depleted by factors of 10–40%. The shape of Colony's thermoluminescence (TL) glow curve is similar to that of Allan Hills A77307 (another unequilibrated chondrite with CO3 petrological characteristics) and different from those of normal CO chondrites. [ALHA77307 also resembles Colony in having low Mg, Mn, Ni and Co, compared to normal CO chondrites, but it possesses CO-CV levels of Se and Zn and nearly CV levels of Cd.] Colony is badly weathered; it contains 22.7 wt.% Fe2O3 and 5.7 wt.% H2O. Recalculating the analysis on an H2O-free basis with all Fe2O3, NiO and CoO converted to metal, yields an inferred original metallic Fe, Ni abundance of ~ 19 wt.%. This is similar to that of Kainsaz (an unweathered CO3 fall), but much higher than that of all other CO3 chondrites (< 6.3 wt.%). Although it is possible that Colony and either ALHA77307 or Kainsaz constitute distinct CO3 chemical subgroups, the weathered nature of Colony and ALHA77307 preclude the drawing of firm conclusions. Nevertheless, it is clear that CO3 chondrites vary more in compositional and petrological properties than was previously recognized.  相似文献   

14.
Abstract— We have studied a unique impact-melt rock, the Ramsdorf L chondrite, using optical and scanning microscopy and electron microprobe analysis. Ramsdorf contains not only clast-poor impact melt (Begemann and Wlotzka, 1969) but also a chondritic portion (>60 g) with what appears at low magnification to be a normal, well-defined chondritic texture. However, detailed studies at high magnification show that >90 vol% of the crystals in the chondritic portion were largely melted by the impact: the chondrules lack normal microtextures and are ghosts of the original features. The only relics from the precursor chondrules are olivine crystals, which have the highest melting temperature (~1620 °C). Pyroxene-rich chondrules were so extensively melted that no phenocrysts were preserved and the melt crystallized in situ before significant mixing with exterior olivine-rich melts. Fine-grained pyroxene chondrule ghosts have sharper boundaries with the matrix than porphyritic olivine and pyroxene chondrule ghosts, probably because pyroxene-rich melts are significantly more viscous. Complex textures that formed by injection of melt along cracks and fractures in relic olivines suggest that the chondritic portion of Ramsdorf formed directly from petrologic type 3–4 material by strong shock. We infer that Ramsdorf was largely melted by shock pressures of ~75–90 GPa and that chondrule ghosts and relic olivine phenocrysts were locally preserved by rapid cooling. Quenching was not due to the addition of cold clasts into the melt but to heterogeneous shock heating that only caused internal melting of large olivines and pyroxenes. Ramsdorf appears to be one of the most heavily shocked meteorites that has retained some trace of its original texture.  相似文献   

15.
Abstract— A search of active deflation basins near Jal, Lea County, New Mexico resulted in the discovery of two meteorites, Lea County 001 and 002. Lea County 001 has mean olivine and low-Ca pyroxene compositions of Fa19 and Fs17, respectively. These and all other mineralogical and petrological data collected indicate a classification of H5 for this stone. Lea County 002 has mean olivine and low-Ca pyroxene compositions of Fa2 and Fs4, and is unequilibrated. Although it is mineralogically most similar to Kakangari and chondritic clasts within Cumberland Falls, the high modal amount of forsterite makes Lea County a unique type 3 chondrite. Oxygen isotope data for Lea County 002 fall on an 16O-mixing line through those of the enstatite meteorites and IAB irons, a feature shared by Kakangari.  相似文献   

16.
The Adams County, Colorado, H5 chondrite contains a lithic fragment, 1 cm in size, that is texturally and mineralogically quite different from the chondritic host. It is composed of: a groundmass of fine-grained euhedral to subhedral olivine (3–15 μm) and interstitial glass enclosing larger olivine and pyroxene grains (0.15-0.5 mm; about 15 vol %); an assemblage of enstatite grains (subfragment within) and an assemblage of olivine plus orthopyroxene (a second subfragment); and about 11 vol % grains of mixed troilite and nickel-iron metal. Analyses yielded these results: (i) olivine grains of the fragment groundmass have a compositional range (Fa12–45) and most grains contain substantial CaO and Cr2O3 (~ 0.20 and 0.30 avg. wt%, respectively); interstitial glass has ~ 55 wt% SiO2; (ii) larger olivine grains of the fragment are similarly high in CaO and Cr2O3 and also have a wide FeO/MgO range; one unusual pyroxene is an Mg-rich pigeonite; (iii) the metal is martensite in composition (11–14 wt% Ni); and (iv) major and trace element analyses by INAA indicate an H-group bulk composition for the entire 1 cm lithic fragment. On the basis of its texture and bulk and mineral compositions, the fragment is interpreted to represent unequilibrated H-group material that was partly melted by impact. The Ca- and Cr-enriched groundmass olivine and interstitial glass resulted from rapid crystallization of the chondritic melt. The Ca- and Cr-enriched larger silicate grains, including the enstatite sub-fragment and the pigeonite grain, are residual, unmelted clasts from the target material (this is supported by the presence of similar material in actual H3 chondrites). Further impact brecciation of the clast-laden melt material, and resultant impact-splashing accounts for the presence of the fragment in the H-group Adams County host and documents the coexistence of unequilibrated and equilibrated H-group material as surface regolith on one parent body.  相似文献   

17.
The Galatia meteorite was found in August, 1971, approximately 7 km ENE of Galatia, Barton County, Kansas (98° 53′W., 38° 39.5′N). The single stone weighed 23.9 kg and is partially weathered. Olivine (Fa24.9) and pyroxene (Fs20.9) compositions indicate L-group classification, and textural observations indicate that the stone is of petrologic type 6. Galatia is similar in many respects to the Otis L6 chondrite (found 20 km to the west), but it does not have the brecciated structure of Otis and, thus, it is not part of the same fall.  相似文献   

18.
The Gao‐Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact‐melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth‐crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao‐Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous‐textured impact melt domain. Olivine is predominantly Fo80–82. The clast domain contains low‐Ca pyroxene. Impact melt‐grown pyroxene is commonly zoned from low‐Ca pyroxene in cores to pigeonite and augite in rims. Metal–troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni‐rich troilite. The metallography of metal–troilite droplets suggest a stage I cooling rate of order 10 °C s?1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao‐Guenie impact melt breccia and the impact‐melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000–40,000 °C yr?1. A simple model of conductive heat transfer shows that the Gao‐Guenie impact melt breccia may have formed in a melt injection dike ~0.5–5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.  相似文献   

19.
The new Brazilian chondrite, Lavras do Sul, was found in 1985 at Lavras do Sul, Rio Grande do Sul State-Brazil (33°30′48″S; 53°54′65″W). It consists of a single mass weighing about 1 kg, covered by a black fusion crust with grayish interior. Four polished thin sections were prepared from a slice weighing 67 g on deposit at the Museu Nacional/UFRJ. It consists mostly of chondrules and chondrule fragments dispersed in a recrystallized matrix. Most chondrules are poorly defined and range in size from 300 to 2,000 μm, although some of them show distinct outlines, particularly when viewed under cross-polarized transmitted and reflected light. The texture of chondrules varies from non-porphyritic (e.g., barred-olivine, radial-pyroxene) to porphyritic ones (e.g., granular olivine as well as olivine-pyroxene). The meteorite contains mainly olivine (Fa24.9), low-Ca pyroxene (Fs22.6) and metal phases, with minor amounts of plagioclase, chromite and magnetite. Mössbauer Spectroscopy studies indicate that the metal phase is kamacite, tetrataenite and antitaenite. Veins of secondary iddingsite crosscut the thin section and some ferromagnesian silicates. The chemical composition indicates that Lavras do Sul is a member of the low iron L chondrite group. The poorly delineated chondritic texture with few well-defined chondrules, the occurrence of rare clinopyroxene and plagioclase (and maskelynite) with apparent diameters ranging from 5 to 123 μm led us to classify Lavras do Sul as an equilibrated petrologic type 5. The shock features of some minerals suggest a shock stage S3, and the presence of a small amount of secondary minerals such as iddingsite and goethite, a degree of weathering W1. The meteorite name was approved by the Nomenclature Committee (Nom Com) of the Meteoritical Society (Meteoritic Bulletin Nº99).  相似文献   

20.
On February 13, 2023, a huge fireball was visible over Western Europe (fireball event 2023 CX1). After the possible strewn field was calculated, the first of several recovered samples, with a mass of about 100 g, was discovered just 2 days after the fireball event on the ground of the village of Saint-Pierre-le-Viger. Meanwhile, more than 60 samples with a total mass of more than 1 kg were recovered and a piece of one of these is studied here. The fall occurred 220 years after the historic meteorite fall of L'Aigle on April 26, 1803, <120 km south. L'Aigle is the closest meteorite fall to Saint-Pierre-le-Viger and belongs to the same chondrite group. Both meteorites are breccias containing only clasts of high metamorphic degree (type 5 and type 6). Since only 20% of the L chondrites are breccias this coincidence is remarkable. As just mentioned, both samples studied from these rocks in this work are ordinary chondrite breccias and consist of equilibrated and recrystallized lithologies of petrologic type 6. The brecciated texture in L'Aigle, resulting in a remarkable light–dark structure, is more pronounced than the brecciated features in Saint-Pierre-le-Viger, from which also type 5 fragments have been reported. The compositions of low-Ca pyroxene and olivine grains in Saint-Pierre-le-Viger (Fs21.2 and Fa23.4, respectively) clearly require an L-group classification. L'Aigle was classified as an L6 breccia in the past, and this has now been confirmed by new data on low-Ca pyroxene and olivine (Fs20.7 and Fa23.8, respectively). Saint-Pierre-le-Viger contains local thin shock veins, and both meteorites are moderately shocked. Most olivines in the studied samples have planar fractures, but the estimated abundance of mosaicized olivines of 30%–40% among the large grains require a S4 shock classification. Oxygen isotope and bulk chemical data of Saint-Pierre-le-Viger certainly support the L chondrite classification. Bulk spectral data of Saint-Pierre-le-Viger are dominated by silicate minerals, that is, Fe-bearing low-Ca pyroxene, olivine, and plagioclase. Isotopic, chemical, and spectral data of the L'Aigle meteorite are shown for comparison and are very similar, providing additional circumstantial evidence of Saint-Pierre-le-Viger's L chondritic nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号