首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present a flux variability study of simultaneous RXTE and EUVE observations of the highly variable Seyfert galaxy NGC 4051. We find a strong correlation between variability in the EUV and medium-energy X-ray bands, indicating that both are sampling the same power-law continuum. The lag between the two bands is less than 20 ks and, depending on model assumptions, may be <1 ks. We examine the consequences of such a small lag in the context of simple Comptonization models for the production of the power-law continuum. A lag of <1 ks implies that the size of the Comptonizing region is less than 20 Schwarzschild radii for a black hole of mass >106 M.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
We report the results of spectral and temporal variability studies of the ultraluminous X-ray sources (ULXs) contained within the interacting pair of galaxies NGC 4485/4490, combining Chandra and XMM–Newton observations. Each of the four separate observations provide at least modest quality spectra and light curves for each of the six previously identified ULXs in this system; we also note the presence of a new transient ULX in the most recent observation. No short-term variability was observed for any ULX within our sample, but three out of five sources show correlated flux/spectral changes over longer time-scales, with two others remaining stable in spectrum and luminosity over a period of at least 5 yr. We model the spectra with simple power-law and multicolour disc blackbody models. Although the data are insufficient to statistically distinguish models in each epoch, those better modelled (in terms of their  χ2  fit) by a multicolour disc blackbody appear to show a disc-like correlation between luminosity and temperature, whereas those modelled by a power-law veer sharply away from such a relationship. The ULXs with possible correlated flux/spectral changes appear to change spectral form at  ∼2 × 1039 erg s−1  , suggestive of a possible change in spectral state at high luminosities. If this transition is occurring between the very high state and a super-Eddington ultraluminous state, it indicates that the mass of the black holes in these ULXs is around  10–15 M  .  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号