首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The composite airborne total intensity map of the Southern Granulite Terrain (SGT) at an average elevation of 7000' (≈ 2100 m) shows bands of bipolar regional magnetic anomalies parallel to the structural trends suggesting the distribution of mafic/ultramafic rocks that are controlled by regional structures/shear zones and thrusts in this region. The spectrum and the apparent susceptibility map computed from the observed airborne magnetic anomalies provide bands of high susceptibility zones in the upper crust associated with known shear zones/thrusts such as Transition Zone, Moyar-Bhavani and Palghat-Cauvery Shear Zones (MBSZ and PCSZ). The quantitative modelling of magnetic anomalies across Transition Zone, MBSZ and PCSZ suggest the presence of mafic rocks of susceptibility (1.5-4.0 × 10−3 CGS units) in upper crust from 8-10 km extending up to about 21-22 km, which may represent the level of Curie point geotherm as indicated by high upper mantle heat flow in this section.Two sets of paired gravity anomalies in SGT and their modelling with seismic constraints suggest gravity highs and lows to be caused by high density mafic rocks along Transition Zone and Cauvery Shear Zone (CSZ) in the upper crust at depth of 6-8 km and crustal thickening of 45-46 km south of them, respectively. High susceptibility and high density rocks (2.8 g/cm3) along these shear zones supported by high velocity, high conductivity and tectonic settings suggest lower crustal mafic/ultramafic granulite rocks thrusted along them. These signatures with lower crustal rocks of metamorphic ages of 2.6-2.5 Ga north of PCSZ and Neoproterozoic period (0.6-0.5 Ga) south of it suggest that the SGT represents mosaic of accreted crust due to compression and thrusting. These observations along with N-verging thrusts and dipping reflectors from Dharwar Craton to SGT suggest two stages of N-S directed compression: (i) between Dharwar Craton and northern block of SGT during 2.6-2.5 Ga with Transition Zone and Moyar Shear towards the west as thrust, and (ii) between northern and southern blocks of SGT with CSZ as collision zone and PCSZ as thrust during Neoproterozoic period (0.6-0.5 Ga). The latter event may even represent just a compressive phase without any collision related to Pan-African event. The proposed sutures in both these cases separate gravity highs and lows of paired gravity anomalies towards north and south, respectively. The magnetic anomalies and causative sources related to Moyar Shear, MBSZ and PCSZ join with those due to Transition Zone, Mettur and Gangavalli Shears in their eastern parts, respectively to form an arcuate-shaped diffused collision zone during 2.6-2.5 Ga.Most of the Proterozoic collision zones are highlands/plateaus but the CSZ also known as the Palghat Gap represents a low lying strip of 80-100 km width, which however, appears to be related to recent tectonic activities as indicated by high upper mantle heat flow and thin crust in this section. It is supported by low density, low velocity and high conductive layer under CSZ and seismic activity in this region as observed in case of passive rift valleys. They may be caused by asthenospheric upwarping along pre-existing faults/thrusts (MBSZ and PCSZ) due to plate tectonic forces after the collision of Indian and Eurasian plates since Miocene time.  相似文献   

2.
The Cauvery Shear Zone (CSZ) is a crustal-scale shear system within the Southern Granulite Terrain along the southern margin of the Archaean Dharwar craton. Structural interpretation of satellite data and field observations reveal four major shear zones within the CSZ system. They show dextral shear kinematics synchronous with a major Neoproterozoic tectono-metamorphic event (D2) associated with intracrustal melting and migmatisation. The disposition, geometry and contemporaneity of shear fabrics of the CSZ system are modelled in terms of a crustal-scale flower structure akin to transpressional and collisional orogens. In the light of recent seismic evidence for a displaced Moho structure and a mid- to lower-crustal low velocity zone, the flower structure across the CSZ may extend to mantle depths.  相似文献   

3.
The Southern Granulite Terrain with exposed Archean lower crustal rocks is studied using various geophysical tools. The crustal structure derived from seismic reflection and refraction/wide-angle reflection studies is used to understand the tectonic evolution of the region. Deep seismic reflection section along the Kolattur–Palani segment shows an oppositely dipping reflection fabric near the Moyar–Bhavani shear zone, which is interpreted as a signature of collision between the Dharwar craton and another crustal block in the south. The thickened crust due to collision was delaminated during the orogenic collapse and modified the central part, covering the Cauvery Shear Zone system, located between the Moyar–Bhavani and Karur–Oddanchatram shear zones. The delaminated lower crust is altered by magmatic underplating as evidenced by the high velocity layer just above the Moho. The velocity model of the region indicates crustal thickening at the boundary of the Dharwar craton and Moyar–Bhavani shear zone and thinning further south. Back-scattered seismic wave field with negative moveout and the Moho-offset indicate the spatial location and strike-slip nature of the shear zones. Present study suggests that the late Archean collision and suturing of the Dharwar craton with the southern crustal block at the Moyar–Bhavani shear zone may be responsible for the evolution of late Archean granulites. Late Neoproterozoic rifting is observed along the paleo-fault zones. The seismic studies constrained by gravity, magnetic and magnetotelluric data suggest that the Moyar–Bhavani and Karur–Oddanchatram shear zones of the Cauvery Shear Zone system mark terrane boundaries/suture zones.  相似文献   

4.

本文对印度南部麻粒岩地体Namakkal陆块Tammampatti地区方柱石石榴子石钙硅酸盐岩进行了详细的岩石学、锆石U-Pb年代学和变质相平衡模拟研究,以研究其岩石成因和地质意义。岩相学观察识别出两阶段变质矿物组合:第一阶段为石榴子石+方柱石+斜长石+榍石+钛铁矿;第二阶段为石榴子石边部的绿帘石和方柱石边缘的方解石、斜长石和石英冠状体。CL图像分析显示锆石可分为两种,分别为高亮度和低亮度的变质锆石。LA-ICP-MS锆石U-Pb定年得到高亮度变质锆石207Pb/206Pb加权平均年龄为2562±17Ma,而低亮度变质锆石的207Pb/206Pb加权平均年龄稍年轻,为2495±15Ma。基于相平衡模拟计算了2个样品18ID-24和18ID-25的P-T视剖面图,确定它们峰期变质PT条件分别为4.3~7.1kbar、800~960℃和4.0~7.8kbar、750~854℃。高亮度变质锆石年龄2562±17Ma与Namakkal陆块紫苏花岗岩的原岩结晶年龄相当,其代表了紫苏花岗岩的原岩侵入导致的接触交代变质作用形成方柱石石榴子石钙硅酸盐岩的时代;低亮度变质锆石年龄2495±15Ma与该地区大约2530~2440Ma的高温-超高温变质作用时代相吻合,因此认为其代表区域性变质作用叠加的时代。根据全岩成分以及矿物组合,我们推测该岩石为中酸性岩浆岩(紫苏花岗岩原岩)与碳酸盐岩发生交代变质作用的产物。

  相似文献   

5.
We present results from a seismic refraction experiment on the northern margin of the Guayana Shield performed during June 1998, along nine profiles of up to 320 km length, using the daily blasts of the Cerro Bolívar mines as energy source, as well as from gravimetric measurements. Clear Moho arrivals can be observed on the main E–W profile on the shield, whereas the profiles entering the Oriental Basin to the north are more noisy. The crustal thickness of the shield is unusually high with up to 46 km on the Archean segment in the west and 43 km on the Proterozoic segment in the east. A 20 km thick upper crust with P-wave velocities between 6.0 and 6.3 km/s can be separated from a lower crust with velocities ranging from 6.5 to 7.2 km/s. A lower crustal low velocity zone with a velocity reduction to 6.3 km/s is observed between 25 and 25 km depth. The average crustal velocity is 6.5 km/s. The changes in the Bouguer Anomaly, positive (30 mGal) in the west and negative (−20 mGal) in the east, cannot be explained by the observed seismic crustal features alone. Lateral variations in the crust or in the upper mantle must be responsible for these observations.  相似文献   

6.
青藏高原东部的隆升机制一直都是地学界的研究热点,研究学者们提出和发展了多种岩石圈变形模型,而存在多种模型的主要原因之一是对青藏高原东部地壳及岩石圈结构认识不足。本文主要针对SinoProbe-02项目横跨龙门山断裂带、全长400多公里的宽角、折射地震数据及重力数据进行联合反演和综合解释。研究结果表明,龙门山及邻近地区地壳结构可明确划分为上地壳、中地壳和下地壳。上地壳上层为沉积层,龙门山断裂带以西大部分区域被三叠纪复理岩覆盖,而在龙日坝断裂与岷江断裂之间出现了密度为2.7g/cm3的高速异常体;向东靠近龙门山地区,沉积层厚度逐渐减薄。中地壳速度变化不均一,而且变形强烈;若尔盖盆地和龙门山断裂带下方出现明显低速带;中地壳在龙门山西侧厚度加厚,在岷江断裂下方和四川盆地靠近龙门山断裂带地区附近厚度达到最大。莫霍面整体深度从东往西增厚,最厚可达56 km。本次研究得到的地壳结构和密度分布分析结果表明现有的地壳厚度和物质组成不足以支撑龙门山及邻近地区目前所达到的隆升高度,因此四川盆地刚性基底西缘因挤压作用产生的弯曲应力也是该地区抬升的重要条件之一。  相似文献   

7.
Venezuela is located on the plate boundary zone between the South American continent and the Caribbean plate. A relative movement of 2 cm/year is accommodated by a system of strike–slip faults running from the Andes to the Gulf of Paria. The Interior Range, a moderate-height mountain range, separates the Oriental Basin from the Caribbean. To the south, predominantly Precambrian rocks are outcropping in the Guayana Shield south of the Orinoco River. Results of deep wide-angle seismic measurements for the region were obtained during field campaigns in 1998 (ECOGUAY) for the Guayana Shield and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from 45 km beneath the Guayana Shield, to 39 km at the Orinoco River, and 36 km close to El Tigre, in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.95 km/s. Detailed information was obtained on the velocity distribution within the Oriental Basin. Velocities are as low as 2.2 km/s for the uppermost 2 km, 4.5 km/s down to 4 km in depth, and a maximum depth of 13 km was derived for material with seismic velocities up to 5.9 km/s, interpreted as the base of the sedimentary basin. A gravimetric model confirms the structures derived from the seismic data. Discrete increases in sedimentary thickness along the basin may be associated to extension processes during the passive margin phase in the Cretaceous, or during earlier extension phases.  相似文献   

8.
A three-dimensional gravity modelling of the Carpatho-Pannonian region was carried out to get a better image of the Moho boundary and the most prominent intra-crustal density heterogeneities. At first, only the major density boundaries were considered: the bottom of the Tertiary basin fill, the Moho discontinuity and the lithosphere to asthenosphere boundary. Density contrasts were represented by relative densities. The improved density model shows a transitional unit of high density at the base of the crust along the Teisseyre-Tornquist Zone. In the Western Carpathians, an extensive, relatively low-density unit was inferred in mid-crustal levels. The border zone between the Southern Carpathians and the Transylvanian basin is characterized by a sharp, step-like contact of the two crustal units. The Moho configuration reveals important information on the tectonic evolution of the region. Zones of continental collision are represented by thick Moho roots (Eastern Alps, Eastern Carpathians). Transpressional orogenic segments, however, are different: in the Western Carpathians, the Moho is a flat surface; in the Dinarides, a medium Moho root is observed; the Southern Carpathians are characterized by a thick crustal root. The differences are explained with the presence or absence of “subductible” oceanic crust along the Carpathians during the extrusion of Pannonian blocks.  相似文献   

9.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

10.
In this paper, we investigate the upper crustal structure of the Irpinia region, Southern Apennines thrust belt, Italy, through analysis and joint interpretation of gravity data, seismic reflection lines and subsurface information from many deep wells. The investigated region includes the epicentral area of the 1980 (Ms=6.9) Irpinia earthquake and is one of the Italian regions with the highest seismic hazard. The upper crustal structure is imaged by modeling a series of 15 SW-trending gravity profiles, spaced about 5 km apart, plentifully constrained by seismic reflection lines and wells, thus reducing the inherent ambiguity of the gravity modeling. Despite of the complexity of the modeled Bouguer anomalies, the application of a calibrating procedure to constrain the range of variability of the density values, as well as the use of geometric constraints, results in a good level of stability in the final density cross-sections, which in fact appear coherent both in the density values and in the geometrical features. The inferred model shows important lateral density variations that can be mostly related to NW-trending geologic structures. High-density bodies delineate carbonate platform thrust sheets and broad antiforms involving Mesozoic basinal rocks, while low-density shallow bodies are associated with Pliocene basins. In addition, important density (i.e. lithological) variations are evident along the strike of the range, the most relevant being an abrupt deepening of the Apulia Carbonate Platform in the southeastern part of the investigated region. In the epicentral region of the 1980 event, we find that the geometry of the high-density, high-velocity carbonates of the Apulia Platform appears correlated with the distribution of the aftershocks and with the P-wave velocity anomaly pattern as inferred from a previous local earthquake tomography. The structural highs of the Apulia Platform correspond to high-velocity regions, where aftershocks and coseismic slip of the mainshock are concentrated. This correlation suggests that the Apulia Carbonate Platform geometry played an important role in the rupture propagation and in the aftershock distribution.  相似文献   

11.
From analysis of the geological and geophysical data (gravity, magnetic, seismic and petrophysics), we propose that geophysical anomalies are produced by a serpentinized mantle peridotite body (SMPB) situated in the middle to lower crust in the Sulu Belt. The SMPB was formed by crustal emplacement of mantle peridotites accompanied by ultrahigh-pressure (UHP) metamorphism. Our finding suggests an emplacement mechanism for the serpentinized mantle wedge (SMW), early in the subduction process. This is different from the classic view, which holds that the serpentinized forearc mantle is formed by in situ hydration processes (Blakely et al., 2005). The petrophysical properties of the SMPB are similar to those of the serpentinized forearc mantle or SMW in modern subduction-zones worldwide, but the formation mechanisms for SMPB and SMW are different. This observation is important for understanding the geodynamic processes that operated in the large UHP metamorphic belt in the Dabie-Sulu area, eastern China.  相似文献   

12.
Because the Hercynian overprint was extremely weak, the Sierra de Córdoba (southeastern Ossa-Morena Zone, OMZ) provides an excellent opportunity to study the tectonic evolution of sequences deposited close to the Late Neoproterozoic–Early Palaeozoic boundary. In order to put constraints on the sources and geodynamic significance of the Late Proterozoic magmatism, a representative set of 18 igneous rocks, and 3 interbedded sedimentary rocks from the San Jerónimo Formation have been studied for major and trace element geochemistry and for the Sm–Nd isotopic systematics. The igneous rocks are generally porphyritic to microporphyritic andesites, with abundant plagioclase (±amphibole) phenocrysts. With the exception of two intrusive rocks, possibly not related to the Late Proterozoic episode, all the samples display positive Nd550 Ma values, ranging from +2.9 to +7.6. Most of them, with +4<Nd550 Ma<+6, exhibit LREE enrichment, high La/Nb ratios, and elevated Zr/Nb ratios ranging from 21 to 32. There is no obvious correlation between the shape of REE patterns, La/Nb ratios and Nd550 Ma values, precluding simple models of late-stage interaction with typical crustal components having low Nd and high LREE/HREE and La/Nb ratios. Based on their major element composition and enriched, continental crust-like trace element characteristics, combined with distinctly positive Nd initial values, the Córdoba andesites document an episode of crustal growth through the addition of calc-alkaline magmas, extracted from a mantle reservoir which was strongly depleted in LREE on a time-integrated basis. The occurrence of interlayered sediments of continental provenance (negative Nd values) does not favour a purely ensimatic arc setting, remote from continental land masses, for this subduction-related magmatism, but the geochemical data suggest an active margin environment located on relatively juvenile crust. In any case, the Córdoba andesites document the addition of materials chemically similar to the bulk continental crust which were extracted from mantle sources with strong time-integrated LREE depletion. Therefore, they provide evidence for crustal growth related to Cadomian orogenic events during Late Proterozoic times.  相似文献   

13.
The southern segment of the seismic profile EUROBRIDGE—EUROBRIDGE-97 (EB'97)—located in Belarus and Ukraine, crosses the suture zone between two main segments of the East European Craton—Fennoscandia and Sarmatia—as well as Sarmatia itself. At the initial stage of our study, a 3-D density model has been constructed for the crust of the study region, including the major part of the Osnitsa–Mikashevichi Igneous Belt (OMIB) superimposed by sediments of the Pripyat Trough (PT), and three domains in the Ukrainian Shield—the Volhyn Domain (VD) with the anorthosite–rapakivi Korosten Pluton (KP), the Podolian Domain (PD), and the Ros–Tikich Domain (RTD). The model comprises three layers—sediments with maximum thickness (6 km) in the PT and two heterogeneous layers in the crystalline crust separated at a depth of 15 km. 3-D calculations show the main features of the observed gravity field are caused by density heterogeneities in the upper crust. Allocation of density domains deeper than 15 km is influenced by Moho topography. Fitting the densities here reveals an increase (up to 2960 kg m−3) in the modelled bodies accompanied by a Moho deepening to 50 km. In contrast, a Moho uplift to a level of 35–37 km below the KP and major part of the PT is associated with domains of reduced densities. An important role for the deep Odessa–Gomel tectonic zone, dividing the crust into two regions one of basically Archean consolidation in the west (PD and RTD) and one of Proterozoic crust in the east (Kirovograd Domain)—was confirmed.2-D density modelling on the EB'97 profile shows that in the upper crust three main domains of different Precambrian evolution—the OMIB (with the superimposed PT), the VD with the KP, and the PD—can be distinguished. Deeper, in the middle and lower crust, layered structures having no connection to the surface geology are dominant features of the models. Least thickness of the crust was obtained below the KP. Greatest crustal thickness (more than 50 km) was found below the PD, characterised also by maximum deviation of velocity/density relation in the rocks from a standard one. The velocity and density models along the EB'97 profile have been interpreted together with inferred Vp/Vs ratios to estimate crustal composition in terms of SiO2 content. In the course of the modelling, the status of the PD as a centre of Archean granulitic consolidation has been confirmed. The crustal structure of the anorthosite–rapakivi KP is complex. For the first time, a complicated structure for the lower crust and lower crust–upper mantle transition zone beneath the KP has been determined. The peculiarities of the crustal structure of the KP are quite well explained in terms of formation of rapakivi–anorthosite massifs as originating from melt chambers in the upper mantle and lower crust. An important role for the South Pripyat Fault (SPF), repeatedly activated during Proterozoic–Palaeozoic times, has been ascertained. At the subplatform stage of crustal evolution the SPF was, probably, a magma channel facilitating the granitic intrusions of the KP. In the Palaeozoic the fault was reactivated during rifting in the PT.  相似文献   

14.
The Gulf of Cadiz is swept by the strong saline Mediterranean Outflow Water (MOW). On the Algarve Margin (South Portugal), this current has constructed fine-grained contourite drifts. This margin is dissected by the Portimao Canyon and three short channels that only incise the upper slope, and are absent on a terrace located at mid-slope depths along the Algarve Margin. High-resolution seismic profiles and sediment cores highlight the original architecture of the sedimentary deposits on this terrace. Coarse-grained lenticular chaotic bodies formed during major relative sea-level lowstands are intercalated within the drift. The lobate shape and sandy nature of the lenticular chaotic bodies and their location at the mouths of the three short channels suggest they are gravity-generated deposits that are perched on the middle continental slope.In the Gulf of Cadiz, the interaction between contour current and gravity processes is strongly controlled by climatic variations and relative sea-level changes during the late Quaternary. During cold periods when sea-level was low, erosion intensified on the continental shelf and the deepest part of MOW was active. Sediment was transported downslope through the channels and deposited on sedimentary lobes perched on the mid-slope terrace. During warm periods when relative sea-level was high, the supply of sediment from the shelf was shut off and the shallowest part of MOW was more active. Contourite drifts fill the channels and bury the sandy lobes.  相似文献   

15.
The variations of rock magnetism reflect the geological inhomogeneities of the earth's crust, i.e. its petrological-mineralogical and structural organization. The present state of the crust bears meaningful information of its past dynamic processes and evolution. We analysed magnetic susceptibility data series from the boreholes of the German Continental Deep Drilling Project (KTB). By means of spectral and rescaled-range (R/S) analyses we could detect a scaling behaviour of magnetic data series and quantify it in fractal terms. In particular, the R/S method yields more precise results than the Fourier analysis and leads to Hurst coefficients H > 0.5, which means that the magnetic variations exhibit some persistence with depth. Because of the relation between rock magnetism and crustal features, we suggest that the magnetic vertical inhomogeneities in the KTB area can be described by a self-affine model with H 0.8, corresponding to a fractal dimension D 1.2.  相似文献   

16.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   

17.
New results from deep seismic reflection profiling, wide-angle reflection-refraction profiling and broadband seismic experiments reveal that a series of south-dipping reflectors occur on the southern margin of the Tarim block (basin). However, it is these south-dipping structures that are intercepted by another series of north-dipping reflectors at depths from 30 to about 150 km beneath the foreland of the W Kunlun Mountains. No evidence from the above geophysical data as well as geochemical and surface geological data indicate the southward subduction of the Tarim block beneath the W Kunlun Mountains (NW Tibet plateau), forming the so-called "two-sided subduction" model for the Tibet plateau as proposed by previous studies. So the authors infer that the tectonic interaction between the Tarim block and the W Kunlun block was chiefly affected by a "horizontal compression in opposite directions", which brought about "face-to-face contact" between these two lithospheric blocks and led to the thickening, sh  相似文献   

18.
The western retroarc of the Southern Andes between 38° and 40° S is formed by a NNW-elongated ridge not associated with stacked thrust sheets. On the contrary, during the last 4–3 Ma this ridge was affected by extensional deformation, regional uplift and related folding on a very broad scale. Receiver function analysis shows that the drainage divide area and adjacent retroarc lie over an attenuated crust. Expected crustal thickness at these latitudes is around 38 km, whereas in this part of the retroarc the thickness is less than 32 km. The causes for such attenuation have been linked to a moderate steepening of the subducted Nazca plate beneath the South American plate, which is suggested by a westward shift and narrowing of the magmatic arc during the last 4 to 5 Ma. Gravimetric studies show that the upper plate did not react homogeneously to slab steepening, but ancient sutures and lithospheric discontinuities deeply buried under Mesozoic to Cenozoic sequences in the retroarc were locally reactivated. These processes resulted in an asthenospheric anomaly that correlates at the surface with the area of Pliocene to Quaternary doming, widespread extension and three radial troughs. Two of the troughs have accommodated substantial amounts of extension, but the third was probably aborted at an early stage. Moreover, the presence of an anomalous concentration of calderas and large volcanic centers over the proposed asthenospheric anomaly, and their age distribution, may indicate minor migration of the asthenospheric anomaly between 4 and 2 Ma through the western South American plate.  相似文献   

19.
Alternations between siliciclastic, carbonate and evaporitic sedimentary systems, as recorded in the Aptian mixed succession of southern Tunisia, reflect profound palaeoceanographic and palaeoclimatic changes in this area of the southern Tethyan margin. The evolution from Urgonian-type carbonates (Berrani Formation, lower Aptian) at the base of the series, to intervals dominated by gypsum or detrital deposits in the remainder of the Aptian is thought to result from the interplay between climate change and tectonic activity that affected North Africa.Based on the evolution of clay mineral assemblages, the early Aptian is interpreted as having been dominated by slightly humid conditions, since smectitic minerals are observed. Near the early to late Aptian boundary, the onset of a gypsiferous sedimentation is associated with the appearance of palygorskite and sepiolite, which supports the installation of arid conditions in this area of the southern Tethyan margin. The evaporitic sedimentation may have also been promoted by the peculiar tectonic setting of the Bir Oum Ali area during the Aptian, where local subsidence may have been tectonically enhanced linked to the opening of northern and central Atlantic. Stress associated with the west and central African rift systems may have triggered the development of NW–SE, hemi-graben structures. Uplifted areas may have constituted potential new sources for clastic material that has been subsequently deposited during the late Aptian.Chemostratigraphic (δ13C) correlation of the Bir Oum Ali succession with other peri-Tethyan regions complements biostratigraphic findings, and indicates that a potential expression of the Oceanic Anoxic Event (OAE) 1a may be preserved in this area of Tunisia. Although the characteristic negative spike at the base of this event is not recognized in the present study, a subsequent, large positive excursion with δ13C values is of similar amplitude and absolute values to that reported from other peri-Tethyan regions, thus supporting the identification of isotopic segments C4–C7 of the OAE1a. The absence of the negative spike may be linked to either non preservation or non deposition: the OAE1a occurred in a global transgressive context, and since the Bir Oum Ali region was located in the innermost part of the southern Tethyan margin during most of the Aptian, stratigraphic hiatuses may have been longer than in other regions of the Tethys. This emphasizes the importance of integrating several stratigraphic disciplines (bio-, chemo- and sequence stratigraphy) when performing long-distance correlation.  相似文献   

20.
《Geodinamica Acta》2013,26(6):455-473
Apatite/zircon fission track (FT) records of the Argentera external crystalline massif (Western Alps) show three tectonic pulses, respectively at 22 Ma (zircons), 6 and 3.5 Ma (apatites). The first pulse is consistent with the basement exhumation and initiation of the major deformation recorded in the foreland of the belt from Middle to early Upper Miocene. The two others might be respectively local expressions of the syncollisional extension mainly controlled by a westward sedimentary cover detachment and a Plio-Quaternary uplift acceleration. Zircon ages of 50-80 Ma in a limited NW area and evidence of an uplift elsewhere show that in a large fraction of the massif, temperatures in post-Variscan times never reached 320°C. Finally, FT data show that the Argentera massif did not behave as a single block during its denudation. First, in the NW of the massif, a small fault-limited block was already separated since the Cretaceous and later on recorded the 6 Ma denudation event, the 22 Ma pulse being recorded only in the remaining part of the massif. Second, less than 3.5 Ma ago, the northeastern part of the massif overthrust the southwestern block along the Bersézio-Veillos fault zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号