首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
南海北部陆缘区中特提斯构造演化研究   总被引:9,自引:0,他引:9  
通过对南海及周边地区特提斯构造遗迹的综合分析,并与东亚、东南亚地区特提斯构造对比,认为南海北部陆缘区存在可以进行东、西向对比的中特提斯构造。相应的中特提斯洋因北巴拉望-礼乐-南沙地块与华南大陆边缘在白垩纪中期的碰撞而关闭。南海北部陆缘区中特提斯构造向西可以与加里曼丹的Metratus缝合线和苏门答腊的Woyla缝合线对比,向东经台湾海峡、琉球群岛与日本佐用带对比。南海北部陆缘区中特提斯构造的确认对正确解释南海北部陆缘区地壳结构在东西向和南北向的差异、重新认识华南陆域内地质构造演化以及对南海北部陆缘区油气资源勘探均具重要意义。  相似文献   

2.
印支运动以后,在现今的南海及其周围存在过2个古海洋,其中晚侏罗世一早白垩世消失于南海北部陆缘区、北巴拉望-礼乐滩-南沙地块以北的古海洋为“中特提斯”,而早第三纪期间消失于南沙地块以南沙捞越一带的古海洋为“古南海”。它们的结束时间和消失的古地理位置完全不同。对它们的正确识别和区分,对目前进行的南海周边地区中一新生代构造演化研究极为重要。对马来半岛、加里曼丹岛中生代岩相古地理资料的整理和分析结果支持如下结论:中特提斯洋的延伸是从苏门答腊的Woyla缝合线,过婆罗洲的Meratus缝合线。然后绕西南婆罗洲地块至加里曼丹岛的西北(Lupar带或者Boyan带),进入南海西南角(南沙-礼乐滩-北巴拉望地块等以北),再接南海北部陆缘区内的中特提斯缝合线。该区中生代海相地层的分布明显受构造演化的控制,整体趋势是向南退缩。印支运动以前、早-中三叠世的海侵广泛分布于古特提斯带及以南地区,涉及华南,中南地块,马来半岛及以南地区;印支运动基本结束了古特提斯带的海侵,因此晚三叠世一早侏罗世的海侵主要限于中特提斯海域及以南地区,如与中特提斯洋相邻的陆域,包括华南的湘赣粤海湾晚三叠世一早侏罗世的海侵、中南半岛东南部早侏罗世的海侵以及新加坡早侏罗世的海相地层。白垩纪海相地层主要分布于中特提斯以南地区,如加里曼丹岛。  相似文献   

3.
南海西北部新生代沉积基底构造演化   总被引:9,自引:0,他引:9  
在综合分析地质、地球物理、地球化学、古生物学等多方面资料的基础上,将南海西北部海域控制新生代主要沉积盆地的基底划分为5个区:北部湾古生界断堑基底区、莺歌海古生界走滑拉分基底区、琼东古生界断陷基底区、西沙北古生界裂谷基底区、西沙南古生界走滑伸展基底区.通过区域地质分析,初步重建了该海域的大地构造演化历史.该海域新生代沉积基底在前新生代时期与其北面陆上云开地区和其南面的南沙地区同处于特提斯构造域中,经历过古特提斯和中特提斯的发育历程,晚古生代以来可初步分为5个阶段:(1)D-P1,古特提斯东段多岛洋体系发育阶段;(2)P2,中特提斯(古南海)开始出现、古特提斯开始消减阶段;(3)T-K1,古特提斯东段多地块缝合阶段;(4)K2-N11,现代南海形成、中特提斯(古南海)消亡时期;(6)N12以来南海扩张停止、澳大利亚板块向北俯冲挤压阶段.  相似文献   

4.
南海南部海区前陆盆地形成与演化   总被引:8,自引:0,他引:8  
将南沙地块南缘与加里曼丹-巴拉望地块作为一个构造演化的整体进行研究,对南海南部构造边界的蛇绿-混杂岩及岩浆岩的分布和岩性,以及南海南部前陆盆地的构造与沉积特征加以描述、分析,发现前陆盆地系统的形成时间是自西南往东北,逐渐由晚始新世末-早中新世-中中新世,与南边的俯冲碰撞带形成时间相对应,认为南沙地块南缘与加里曼丹-巴拉望地块之间经历了一个与古南海消亡息息相关的连续演化的过程。  相似文献   

5.
自1997年以来,联邦德国地球科学和资源调查局(BGR)从南海,苏禄海地区的采集的地球科学数据连同可利用的商业钻井和大洋钻探计划(ODP)的井位资料一起作为综合数据进行了编辑和解释,用已解释的地震剖面对综合地层,岩性资料进行讨论和对比,以地层和构造分析的基础,把南海和苏禄发别划分为5个和4个主要的构造地层地体。南沙岛礁区(危险地块),礼乐滩,巴拉望-西北婆罗洲海槽及巴拉望岛是晚白垩世-早古新世期间  相似文献   

6.
南海围区中、新生代古地磁特征与南海地质构造演化   总被引:2,自引:0,他引:2  
南海的形成和构造演化的研究表明:早—中三叠世,印支微板块与华南微板块相隔约8个纬度,两者于晚三叠世碰撞成统一大陆。古新世—早渐新世,华南微板块向南漂移了约9.5个纬度;中渐新世一早中新世,它则向北漂移了约8个纬度。此一漂移对南海的第二期S—N向扩张起了重要的控制作用。菲律宾岛弧的两期大规模的逆时针旋转(40多度和20多度)恰好分别与太平洋板块运动方向的改变和南海海盆洋壳向东发生俯冲相对应。南海的扩张活动与周缘块体的相互运动有关。  相似文献   

7.
华南中生代岩相变化及海相地层时空分布   总被引:17,自引:3,他引:17  
在搜集大量资料的基础上,分析了华南中生代地层时代、岩性、岩相对比关系,重点综述了中生代海相地层的时空分布特征。受所处构造部位的控制,华南中生代岩相时空变化总体上可分为3个区:东区(闽西南-粤东-粤北-粤中)、中区(粤西-桂东)、西区(滇西-滇东南)。中区在早三叠世以后完全隆升成陆,仅局部有山间盆地碎屑沉积。海相地层集中于东西两区,但存在明显的东西差异:海侵时间在东区为早三叠世、晚三叠世-早侏罗世和早白垩世,西区为中三叠世和中侏罗世;海侵方向在东区来自东南,西区则为中特提斯滇缅海的-部分。晚三叠世-早侏罗世的粤东海盆发育厚达5000m的海相和海陆交互相沉积,可能向南延伸到台西南盆地和南沙群岛东部,但它与南海西部围区的同时代海盆并不直接相通。  相似文献   

8.
南海北部中生代沉积模式   总被引:6,自引:2,他引:4  
南海东北部与西北部海域均分布有中生代地层,地震勘探揭示南海北部中生界东、西之间在地震相及沉积充填结构上存在明显差异,东部中生界为双层结构,而西部为单层结构.东部中生代地层由海相及海陆过渡相侏罗系与陆相白垩系组成,而西部则由陆相白垩系构成,缺失侏罗系.从海水入侵方向看,南海北部中生界与特提斯域无关,可能更受太平洋域的影响.侏罗纪古太平洋边缘海盆在南海北部主要分布在珠江口盆地东部及台西南盆地,从早侏罗世到晚侏罗世海盆范围逐渐缩小;白垩纪南海北部整体抬升,除台西南盆地东部接受海相沉积外,白垩纪南海北部以小型断陷盆地为特征,在断陷盆地内接受陆相河湖相沉积.南海北部在中生代时期位于特提斯构造域与太平洋构造域的交接部位,东部中生界双层结构、西部单层结构的沉积模式进一步明确濒太平洋构造域的对南海北部中生界的控制作用,同时东部将是中生代油气勘探的有利区域.  相似文献   

9.
在已有地质、地球物理成果的基础上,结合天然地震面波层析成像(SVCT)、卫星重力异常计算,海南岛野外地质考察和古地磁、古生物的研究成果,采用综合分析的方法,我们对南海及围区的大地构造单元划分、特征及演化进行了深入探讨。南海及围区可划分为华南陆块(包括黔桂、闽粤和海南-南海北缘缘地体)、印支陆块(包括印支、东马-西南婆罗洲、中西沙、礼乐-北巴拉望地体)郑和曾母陆块、吕宋-苏绿波较洲沟弧增生系和南海洋  相似文献   

10.
通过综合分析研究发现,晚中生代时期南海北部构造隆升带存在随时间由北向南逐步迁移:中晚侏罗世广东沿岸开始逐步隆升,大部分地区遭受剥蚀,火山碎屑岩发育,而南海北部则接受了滨浅海相到深海相沉积;早白垩世隆升带向海迁移,广东沿岸发育山间盆地,接受河湖相沉积,在南海北部深海相沉积消失,仅存在海陆过渡相沉积;进入晚白垩世,南海海域整体发生抬升,广东沿岸地区山间盆地范围扩大,陆相地层发育,以陆相洪积扇及河湖相沉积为特征,南海海域大部分地区缺失上白垩统,但在潮汕坳陷发育了一套杂色砂泥岩夹砾岩沉积,含蒸发岩,砂岩中的锆石FT年龄均在75 Ma左右,故地层形成时间应在75 Ma之后,由于上覆新生代地层的约束,该套地层应属晚白垩世,此时潮汕坳陷属前陆盆地,礼乐盆地、巴拉望及民都洛均位于潮汕坳陷南侧或西南侧,属于隆升山脉的一部分。  相似文献   

11.
中国东部的苏鲁造山带印支期先后经历了大洋消减俯冲、大陆碰撞、陆壳深俯冲、陆内造山等复杂过程。综合苏鲁造山带的构造地质学、岩石学、岩相古地理学、年代学进展,发现以下事实用传统的华南向华北俯冲难以解释:(1)徐淮地区形成了明显的朝北西拓展的逆冲构造变形,此外,苏鲁造山带中还存在大量的北西向逆冲推覆构造;(2)苏鲁造山带中出露的白垩纪花岗岩中来自古元古代的继承锆石,以及Sr、Nd、Pb同位素示踪结果都显示与华北地块南缘地质体更为相似;(3)苏鲁造山带北侧的胶莱盆地以及胶北隆起缺乏晚古生代到中生代的弧后火山岩证据;(4)华北南缘三叠纪时期的古地理环境更接近被动大陆边缘。基于这些事实,本文认为,晚古生代-早三叠世早期苏鲁段的商丹洋可能向南东俯冲,不同于秦岭-大别段的商丹洋向北俯冲,消减到秦岭-大别微陆块苏鲁段之下,发生华北地块与该微陆块的拼合,华北地块整体向南东楔入秦岭-大别微陆块,导致大别-苏鲁超高压岩石垂向折返剥露;中三叠世-晚三叠世,勉略洋自东向西的剪刀式闭合,华南地块向北秦岭-大别微陆块俯冲拼合,并逐渐将华南地块与华北地块之间的秦岭-大别微陆块向西、向北侧向挤出,到了中生代华北地块持续向南东俯冲并楔入华南地块,将苏鲁-大别造山带沿郯庐断裂错断并最终形成该区总体构造格局。  相似文献   

12.
古南海的展布范围以及俯冲消亡过程等一直是地质学家们争论的焦点问题。这不仅与南海扩张诱因密切相关,而且对南海地球动力学研究有重大的指导意义。在研究前人文献的基础上,对南海南部造山运动以及古南海俯冲过程之间的关系进行详细的论述。结果表明,南海南部构造活动主要分为两期:第一期运动从早白垩纪到晚白垩纪,古太平洋的洋壳俯冲到婆罗洲岛下方,俯冲带位于现今卢帕尔线一带,引起了曾母-南沙地块不断向西南婆罗洲靠近,并于晚白垩纪引发了碰撞造山运动。由于婆罗洲自身是由众多地块拼合而成,所以在始新世期间发生了多期碰撞之后的地块变形重组事件。最终在晚始新世(37 Ma)完成最后一期变形(沙捞越运动)。第二阶段是晚始新世(35 Ma)到中中新世(15.5 Ma),位于西巴拉姆线以东至菲律宾卡加延一带的古南海从西巴拉姆线以东,向婆罗洲岛下方俯冲,随后扩散到沙巴以及巴拉望岛以南的地区,直至菲律宾的民都洛岛一带停止俯冲。由此产生的拖曳力是南海扩张的主要诱因。与古太平洋板块俯冲产生的效果相似,古南海的俯冲使得婆罗洲岛与南沙地块不断靠近。在中中新世(15.5 Ma),引起南沙地块与婆罗洲岛在沙巴地区的碰撞(沙巴造山)以及巴拉望北部陆壳与菲律宾岛弧的碰撞而停止。由此带来的不整合面在南海南部普遍可见,甚至到达了巴拉望岛一带。而现今南沙海槽与巴拉望海槽并非是俯冲带的前渊,前者是对沙巴新近纪增生楔重力驱动变形的响应,后者是巴拉望岛北侧伸展背景下产生的半地堑盆地,在后期增生楔的作用下发生强烈沉降所形成。真正的俯冲带则分别位于南沙海槽东南部以及巴拉望海槽东南部。据现有证据推测,最少在10 Ma之前古南海就在菲律宾民都洛一带停止俯冲,从而完成了整个古南海的封闭。  相似文献   

13.
Compared to the northern South China Sea continental margin, the deep structures and tectonic evolution of the Palawan and Sulu Sea and ambient regions are not well understood so far. However, this part of the southern continental margin and adjacent areas embed critical information on the opening of the South China Sea (SCS). In this paper, we carry out geophysical investigations using regional magnetic, gravity and reflection seismic data. Analytical signal amplitudes (ASA) of magnetic anomalies are calculated to depict the boundaries of different tectonic units. Curie-point depths are estimated from magnetic anomalies using a windowed wavenumber-domain algorithm. Application of the Parker–Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. The Palawan Continental Block (PCB) is defined by quiet magnetic anomalies, low ASA, moderate depths to the top and bottom of the magnetic layer, and its northern boundary is further constrained by reflection seismic data and Moho interpretation. The PCB is found to be a favorable area for hydrocarbon exploration. However, the continent–ocean transition zone between the PCB and the SCS is characterized by hyper-extended continental crust intruded with magmatic bodies. The NW Sulu Sea is interpreted as a relict oceanic slice and the geometry and position of extinct trench of the Proto South China Sea (PSCS) is further constrained. With additional age constraints from inverted Moho and Curie-point depths, we confirm that the spreading of the SE Sulu Sea started in the Early Oligocene/Late Eocene due to the subduction of the PSCS, and terminated in the Middle Miocene by the obduction of the NW Sulu Sea onto the PCB.  相似文献   

14.
China comprises a mosaic of distinct continental fragments separated by fold belts. These fold belts are suture zones resulting from the accretion of various fragments formerly separated by intervening areas of oceanic crust.The major sedimentary basins onshore China can be classified into four groups. Those in western China are flexural, developing as a result of north-south compression. In contrast, those in the east are extensional and related to development of the Pacific oceanic margin. In central China, basins have a more problematic origin. Those of north central China (Ordos, Sichuan) are flexural basins controlled by eastward directed thrusting along their western margin. In contrast, basins further south (Chuxiong, Shiwandashan) are predominantly extensional and related to major strike-slip movements.By synthesizing basin stratigraphies across China in tectonostratigraphic terms (and in particular comparing the nature and timing of unconformities), it is possible to formulate a coherent model for the palaeoreconstruction of China. We identify five major tectonostratigraphic breaks which equate with the collision of the following continental fragments: Tarim/North China (Carboniferous-Permian), South China Block (Permian-Triassic), Qiantang (Late Triassic-Early Jurassic), Lhasa Block (Late Jurassic-Early Cretaceous) and India (Early Tertiary).Prior to Permian times, the southern margin of Eurasia ran approximately along the northern border of modern China. The Late Carboniferous collision of Tarim/North China with Eurasia resulted in the development of a flexural basin (Junggar) and deposition of non-marine clastics. To the south of the suture, shallow marine deposition continued. In the Late Permian-Early Triassic, the progressive collision from east to west of the South China Block with the North China Block resulted in a change to fluvial/lacutrine sedimentation across the entire North China-Tarim block. Open marine carbonate deposition in the north of the South China Block passed southward into a deeper marine clastic sequence deposited in a backarc basin. Further south, a subduction zone existed along the southeastern margin of the South China Block.In western China, northward subduction throughout the Triassic resulted in the development of the Songban-Ganzi accretionary prism with retroarc thrusting resulting in flexure and the first development of the Tarim basin. Oblique collision of the Qiantang Block in the Late Triassic along the east of the South China Block resulted in east-west directed thrusting which initiated the Suchuan and Ordos basins. Continued strike-slip deformation along the south western margin of the South China Block resulted in the development of basins with a significant extensional component such as Chuxiong.The collision of the Qiantang Block with the southern edge of the Tarim Basin (Early Jurassic) resulted in a renewed clastic influx in both the Tarim and Junggar basins. Along the eastern (Pacific) margin a compressional arc and retroarc basin in the south passed northwards into an extensional arc system. Subduction rollback of the extensional arc initiated rifting in the Late Jurassic in the Eren and Songliao basins.The Late Jurassic-Early Cretaceous collision of the Lhasa Block in the west rejuvenated the thrust systems bordering the western basin and resulted in a renewed clastic influx. In the southeast, the compressional arc phase culminated in widespread thrusting and folding of Early Cretaceous age. In the northeast, extension continued with the progressive migration of the rift system southward with time.The arrival of the Indian Block in the Early Tertiary rejuvenated the bounding thrust belts of all the western basins. In the east, the change in convergence of the Pacific plate to a more westerly direction is marked by extension and widespread rifting along the entire length of Eastern China.Throughout most of China, Mesozoic and Cenozoic deposition occurred in predominantly non-marine environments. Source rocks in such settings comprise principally mudstones deposited in lakes (organic-rich mudstones). These can accumulate in both deep and shallow lakes. In order to accumulate substantial volumes, the lake must be significant in space and time.In China, lacustrine ORMs occur in both rift and flexural basins. Lacustrine ORMs deposited under humid climatic conditions are restricted to the period of maximum tectonic subsidence. In the flexural basins of western China, source rock deposition follows basin initiation by 20–30 Ma. In the extensional basins of eastern China, source rock deposition takes place 5–15 Ma after basin initiation. By contrast, semi-arid and arid climate lacustrine ORMs, whilst being best developed during the period of maximum tectonic subsidence, occur at all stages in the basin history.  相似文献   

15.
珠江口盆地的形成与南海的构造演化   总被引:2,自引:0,他引:2  
周祖翼 《海洋科学》1993,17(5):62-66
南海地块在中生代早期与华南大陆边缘发生了一次陆陆碰撞,这一碰撞形成了研究地区中生代近EW向为主的构造格局,珠江口盆地及整个南海的演化都是在南海地块各块体裂离华南陆缘后发生的。盆地自晚白垩世以来,先后经历了不同构造方向的两期张裂阶段及张裂后沉降阶段。  相似文献   

16.
Several mechanisms have been proposed for the opening of the South China Sea. Here, we use SKS splitting analysis to investigate the mantle flow surrounding the South China Sea. We use a total of 23 seismic stations and 87 events. We applied spectral analysis and cluster analysis to find a stable splitting solution for each event. The main conclusions are: (1) In northern Vietnam, the NW–SE fast direction is parallel to the absolute plate motion as well as GPS observations with splitting times larger than 1 s, indicating a coupled lithosphere and mantle. In contrast, in southern Vietnam, the NE–SW fast direction suggests that the lithosphere and asthenosphere are decoupled. (2) The fast directions beneath the South China Block and central Taiwan are NE–SW and NS respectively, both parallel to surface deformations with splitting times greater than 1 s, indicating that mantle flow and surface deformation are related. (3) The observed NW–SE fast directions beneath Hainan Island reflect the India–Eurasia collision, and show no signatures of an upwelling mantle plume directly underneath Hainan Island. This implies that Hainan Island is tectonically closely related to the Red River Fault, not the South China Block. (4) In Borneo, the observed NE-SW direction is parallel to the Palawan Trench, consistent with flow associated with the inactive proto-South China Sea subduction system. The SKS splitting observations surrounding South China Sea cannot be explained by a single geologic process, with either the collision-driven extrusion model or the slab pull model fitting the data presented here.  相似文献   

17.
我国南海历史性水域线的地质特征   总被引:3,自引:1,他引:2  
40a的海洋地质、地球物理实测研究表明,九段线不仅是显示我国南海主权的历史性水域线,而且总体上也是南海与东部、南部和西部陆区及岛区的巨型地质边界线。根据实测数据,本文将从地质成因、来源、演化的角度论述此南海历史性水域线的合理性。主要结论包括:历史性水域线的东段在地形上基本与马尼拉海沟一致,海沟西侧为南海中央海盆洋壳区,东侧为菲律宾群岛。根据国际地质研究的资料,菲律宾群岛始新世以前位于较偏南的纬度,后来于中晚中新世(距今16~10Ma)仰冲于南海中央海盆之上,因此菲律宾群岛是一个外来群岛。而黄岩岛在马尼拉海沟以西,是中央海盆洋壳区的一个岛礁,与菲律宾群岛成因不同。南海历史性水域线的南段在地形上基本与南沙海槽一致,伴随南沙地块由北部陆缘向南裂离,古南海洋壳沿此海槽以南俯冲至加里曼丹岛陆壳之下,因此南沙地块与加里曼丹陆块为两个来历不同的地块。南海历史性水域线西段的分布在地形上与越东巨型走滑断裂带基本一致,可能与西沙地块、中沙地块、南沙地块从南海北部陆缘向南滑移有关。南沙地块北缘陡直的正断层结构,突显中央海盆是拉裂形成,其基底和中新生代地层与北部珠江口盆地的地层结构可以对比,说明南沙岛礁原属我国华南大陆南缘,后因南海的形成裂离至现今的位置。  相似文献   

18.
南海南部新生代盆地自北向南有南薇西、北康、礼乐、曾母、南沙海槽、文莱-沙巴、西北巴拉望等多个中小型新生代沉积盆地。这些盆地总体具有南断北超的箕状结构,靠近北部陆坡部位具有单一地堑结构,但是靠近南部具有两层结构,下部为箕状断陷,上部为叠瓦式逆冲推覆体。根据盆地不同演化阶段性质的转换和主控盆断裂特征,可将这些盆地归纳为3种盆地群:裂陷盆地群(南薇西、北康、礼乐)、裂陷-拉分-前陆叠合盆地(曾母)以及裂陷-前陆盆地群(南沙海槽、文莱-沙巴、西北巴拉望)。这些盆地的形成与盆缘一级控盆断裂带和盆内次级断裂密切相关。根据断裂的性质,一级控盆断裂带可分为张性、剪性、压性3种,包括南沙海槽北缘张性断裂带,南海西缘、卢帕尔和廷贾-李准等走滑断裂带和南沙海槽南缘逆冲断裂带。南海南部渐新世南海运动、中中新世南沙运动等构造事件不同程度地影响了这些盆地,表现在盆地由裂陷或拉分盆地转换为海相前陆盆地,断裂带不同程度的反转或由正断层转变为逆断层或走滑断层。盆地群的成盆动力学机制不同阶段是变化的,早期可能受欧亚大陆东南缘陆缘裂解作用、古南海的南向俯冲拖曳,导致南海南部裂离华南大陆并形成南断北超的箕状断陷盆地;晚期(16 Ma以后)南海南部出现指向北的前展式、叠瓦式逆冲推覆,其动力来源于南部的澳大利亚板块和欧亚板块的碰撞,同时导致盆地性质转换和婆罗洲地块的逆时针旋转。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号