首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Balloon observations of the cosmic diffuse component of hard X-rays were conducted with two independent directional counters in two energy bands, from 20 keV to 120 keV and from 90 keV to 4 MeV. The build-up effect of primary X-rays and the altitude dependence of atmospheric X-rays were properly taken into account in the analysis of the growth curves. These two experiments gave consistent results in the overlapping energy region. If the differential energy spectrum of the photon flux is represented by a power lawE , the value of α is 2.3 up to 100 keV, gradually increases to 2.8 at about 500 keV, and decreases to 2.0 thereabove. The spectrum above 300 keV is in parallel to the Apollo-15 spectrum, whereas the absolute intensity is somewhat smaller. The shape of the spectrum suggests the necessity of a multi-component theory on the origin of cosmic diffuse X-rays.  相似文献   

2.
The energy spectrum of diffuse hard X-rays measured in the range 10–40 keV shows a rather sharp change of slope. The logarithmic derivative of the spectrum changes around 20–30 keV by the increment significantly greater than 0.5 within an interval smaller than 50 keV.  相似文献   

3.
Diffuse cosmic X-rays in the energy range 20–125 keV were measured in four balloon flights from Hyderabad, India during 1968–70 using almost identical X-ray telescopes mounted on oriented platforms. The results from these flights show that the spectrum of the diffuse cosmic X-rays can be represented by the form dN/dE=29E –2.1±0.3 photons/(cm2 sr s keV) in 20–125 keV interval after corrections for photoelectric absorption and Compton scattering effects in the atmosphere. The best fit spectrum of all published results in the energy interval 20–200 keV can be represented by the form dN/dE=36E –2.1±0.1 photons/(cm2 sr s keV) after similar corrections are effected, and there is no need for a change of spectral index in this energy interval. The intensity at 20 keV obtained from the above spectrum agrees well with that given by the spectral form dN/dE=10E –1.7±0.1 photons/(cm2 sr s keV) in the energy interval 1–20 keV in several rocket experiments. Therefore it is concluded that if there is a break in the spectrum, it occurs between 10 and 20 keV with a change of spectral index by about 0.5, or the index is continuously changing from 1.7±0.1 to 2.1±0.1 in 10–20 keV interval. The implications of the results are briefly discussed.  相似文献   

4.
Cosmic soft X-rays in the energy range between 0.14 and 7 keV were observed with thin polypropylene window proportional counters on board a sounding rocket. The field of view crossed the galactic plane in the Cygnus-Cassiopeia region at a large angle and reached the galactic latitudes of –55° and +30°. Referring also to the result with Be window counters, we obtained the energy spectrum of Cyg XR-2, the flux from the Cas A region and the distribution of the intensity of diffuse X-rays over the scanned region. The turn-over of the Cyg XR-2 spectrum at about 1 keV indicates that the distance of the Cyg XR-2 source lies between 600 and 800 pc, if the turn-over is due entirely to interstellar absorption. The flux from the Cas A region is obtained as 0.23±0.05 photons cm–2 sec–1 in the energy range between 1.1 and 4.1 keV. The intensity of diffuse soft X-rays depends on the galactic latitude more weakly than expected from the interstellar absorption of extragalactic X-rays and shows asymmetry with respect to the galactic equator, thus suggesting a contribution of galactic X-rays. The spectrum of extragalactic X-rays is approximately represented by a power lawE –1.8.  相似文献   

5.
Lin  R. P. 《Solar physics》1987,113(1-2):217-220

We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (≲1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting ∼3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to ≳100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically ∼102 kV compared to ∼10 kV for auroral substorms.

  相似文献   

6.
Rocket measurements, of the diffuse X-ray background in the energy range 2–18 keV, conducted from Thumba Equatorial Rocket Launching Station (TERLS), India, are presented. The estimates of the cosmic background are derived by the method which employs the Earth and its atmosphere as a shutter to intercept the celestial X-rays. The results are shown to be consistent with a power law photon spectrum.13.6 –3.3 +4.3 E –1.73±0.15 photons/cm2-sec-keV-ster the spectrum being much flatter than that observed at higher energies.  相似文献   

7.
Diffuse cosmic background and atmospheric gamma-radiation in the range 28 keV-4.1 MeV were studied with a scintillation spectrometer on board of the Kosmos 461 satellite. Separation of the cosmic and atmospheric components was made possible through a reliable determination of the geomagnetic dependences of albedo gamma-radiation: The spectrum of diffuse background in the energy range covered cannot be fitted with a common law. At energies below 400 keV the spectrum follows a power-law $$I = (5.6 \pm 0.5) \times 10^{ - 3} E^{ - (2.80 \pm 0.05)} cm^{ - 2} s^{ - 1} sr^{ - 1} MeV^{ - 1} .$$ Starting from 400 keV, this power-law breaks down; the spectrum revealing a clearly pronounced shoulder. Extrapolation of the power-law spectrum to higher energies shows that the gamma-ray component responsible for the change in the shape of the spectrum is quite strong, becoming predominant in the diffuse background in the range 1–100 MeV. The intensity of excess radiation is maximum in the region of 700–800 keV reaching ~1.8×10?2 cm?2s?1sr?1 MeV?1. The shape of the high energy component spectrum of the diffuse background constructed using the data of Kosmos 461 and SAS-2 is in agreement with the hypotheses of the cosmological origin of the radiation.  相似文献   

8.
The intensity of the diffuse component of cosmic X-rays was measured with use of a rotating collimator system borne on a sounding rocket. A part of background counts proportional to the field of view of proportional counters enabled us to determine the intensity of the diffuse component to be 0.66±0.07 photons cm–2 sec–1 keV–1 in the energy range between 3.6 and 9.0 keV. The spectrum in this energy range was found to be comparatively flat. The intensity of Sco X-1 was also measured and its time variation was investigated.  相似文献   

9.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

10.
As the origin of the soft X-ray background, emission of soft X-rays from shocks occurred in the accretion of intergalactic gas onto the Galaxy is studied. Infall of discrete gas clouds cannot explain the diffuse component of soft X-rays. If intergalactic gas rich in heavy elements as the cosmic abundance continously flows into the Galaxy and forms a standing shock surrounding the Galaxy, the line emissions by heavy elements from the shocked gas explain the soft X-ray background. Formation of the high velocity cloud by thermal instability in the shocked gas is also discussed briefly.  相似文献   

11.
PSR J1833−1034 and its associated pulsar wind nebula (PWN) have been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low-energy X-ray data from Chandra reveal a complex morphology that is characterized by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from  Γ= 1.61  in the central region to  Γ= 2.36  at the edge of the PWN. At higher energy, INTEGRAL detected the source in the 17–200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent High Energy Stereoscopic System (HESS) observations in the high-energy gamma-ray domain show that PSR J1833−1034 is a bright TeV emitter, with a flux corresponding to ∼2 per cent of the Crab in 1–10 TeV range. In addition, the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL . Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor  γ∼ 109  in a magnetic field of ∼10 μG. In this hypothesis, the TeV emission is due to inverse-Compton interaction of the cooled electrons off the cosmic microwave background photons. Search for PSR J1833−1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.  相似文献   

12.
We present a new method of estimating the energy of microwave-emitting electrons from the observed rate of increase of the microwave flux relative to the hard X-ray flux measured at various energies during the rising phase of solar flares. A total of 22 flares observed simultaneously in hard X-rays (20–400 keV) and in microwaves (17 GHz) were analyzed in this way and the results are as follows:
  1. The observed energy of X-rays which vary in proportion to the 17 GHz emission concentrates mostly below 100 keV with a median energy of 70 keV. Since the mean energy of electrons emitting 70 keV X-rays is ?130 keV or ?180 keV, depending on the assumed hard X-ray emission model (thin-target and thick-target, respectively), this photon energy strongly suggests that the 17 GHz emission comes mostly from electrons with an energy of less than a few hundred keV.
  2. Correspondingly, the magnetic field strength in the microwave source is calculated to be 500–1000 G for the thick-target case and 1000–2000 G for the thin-target case. Finally, judging from the values of the source parameters required for the observed microwave fluxes, we conclude that the thick-target model in which precipitating electrons give rise to both X-rays and microwaves is consistent with the observations for at least 16 out of 22 flares examined.
  相似文献   

13.
The relationship between the X-ray flux and the radio flux from cosmic objects is investigated. We consider the emission from energetic electrons on the condition in which a plasma and a magnetic field exist. As energetic electrons under the circumstances emit both X-rays by the bremsstrahlung mechanism and radio waves by the gyrosynchrotron mechanism simultaneously, it is shown that the radio flux density is closely related to the X-ray flux density. Solving an integral equation describing the X-ray flux density at Earth, we obtain the energy spectrum of electrons in the emitting region. Inserting the result into equation of the radio flux density at Earth, we obtain the direct formula between the X-ray flux density and the radio flux density. The relation is independent of the distance between Earth and cosmic sources. Assuming a power-law X-ray spectrum, we evaluate the numerical relation between two flux densities.  相似文献   

14.
We perform Monte Carlo simulations of cosmic ray-induced hard X-ray radiation from the Earth's atmosphere. We find that the shape of the spectrum emergent from the atmosphere in the energy range 25–300 keV is mainly determined by Compton scatterings and photoabsorption, and is almost insensitive to the incident cosmic ray spectrum. We provide a fitting formula for the hard X-ray surface brightness of the atmosphere as would be measured by a satellite-borne instrument, as a function of energy, solar modulation level, geomagnetic cut-off rigidity and zenith angle. A recent measurement by the INTEGRAL observatory of the atmospheric hard X-ray flux during the occultation of the cosmic X-ray background by the Earth agrees with our prediction within 10 per cent. This suggests that Earth observations could be used for in-orbit calibration of future hard X-ray telescopes. We also demonstrate that the hard X-ray spectra generated by cosmic rays in the crusts of the Moon, Mars and Mercury should be significantly different from that emitted by the Earth's atmosphere.  相似文献   

15.
The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10–100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated Hα flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30–44 keV range, but only one had flux at the 3σ level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.  相似文献   

16.
For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in the optical and NIR with Gemini North and in the radio with the WSRT. In this paper we present the source-energy distribution. The spectral results obtained in the individual wave bands do not connect smoothly; apparently components of different origin contribute to the total spectrum. Remarkable is that the INTEGRAL hard X-ray spectrum (power-law index 0.79±0.10) is now measured up to an energy of ~230 keV with no indication of a spectral break. Extrapolation of the INTEGRAL power-law spectrum to lower energies passes orders of magnitude underneath the NIR and optical fluxes, as well as the low ~30 μJy (2σ) upper limit in the radio band.  相似文献   

17.
The Soft X-ray focusing Telescope (SXT), India’s first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3–8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.  相似文献   

18.
The highly variable BL Lacertae object Mrk 421 has been observed simultaneously in the radio, optical ultraviolet, and X-ray bands over a period of 4 days in early 1984 December and once again in early 1985 January. Using the EXOSAT observatory, we found that dramatic changes occurred in the X-ray flux on a time scale of less than a mouth. During this time the 2-10 keV flux dropped by a factor of 8, whereas the 0.1-1 keV flux decreased by a factor of only 2. These changes were not reproduced at longer wavelengths during the period of simultaneous observations. However, a drop in the ultraviolet flux occurred some months later, which is consistent with the longer characteristic loss times for the lower energy electrons. Since the ultraviolet through radio flux is stable when the X-ray flux is changing, it is extremely unlikely that a simple synchrotron model can account for the full spectrum; in this model the whole spectrum is expected to rise uniformly and in phase as a result of the injection of energetic particles. A simple synchroton self-Compton model that is self-absorbed in the radio also requires an X-ray flux which is many orders of magnitude greater than is observed. However, this discrepancy may be explained by relativistic beaming of electrons with delta > approximately 40 or by a model in which the self-absorption turnover occurs in the optical, and the synchrotron break occurs in the X-rays. Shorter time scale (approximately 10,000 s) variability was also apparent in the 2-10 keV X-ray light curves, and we suggest that it may be a direct measure of the injection time scale. Although reasonable fits resulted when the X-ray data were compared with a simple power-law model with some absorption, a substantial improvement in chi 2 was obtained by adding a high-energy exponential cutoff. Use of this model produced a spectral index close to that typically found in the optical for BL Lacertae objects, in contrast to the high values usually inferred from X-ray spectra.  相似文献   

19.
The evolution of hot thermal plasma in solar flares is analyzed by a single-temperature model applied to continuum emission in the 5 keV < E ? 13 keV spectral range. The general trend that the thermal plasma observed in soft X-rays is heated by the non-thermal electrons that emit as the hard X-ray bursts is confirmed by the observation of an electron temperature increase at the time interval of hard X-ray spikes and a quantitative comparison between thermal energy content and hard X-ray energy input. Non-thermal electrons of 10 keV < E < 30 keV energy may play an important role in pre- and post-burst phases.  相似文献   

20.
The measurements of the hard X-ray spectrum of Sco X-1 in the energy interval 20–150 keV in three balloon flights from Hyderabad, India are reported. These results show conclusively that the spectrum of Sco X-1 is very flat in the energy interval 40–150 keV and the measured fluxes beyond 60 keV are several orders of magnitude higher than those expected on the basis of an extrapolation of bremsstrahlung spectrum from a thin hot plasma at a temperature corresponding tokT=5 keV, which is applicable for Sco X-1 for energies <40 keV. The results are compared with those of other investigators of hard X-rays from Sco X-1, and the implication of the results is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号