首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A time sequence of magnetograms and velocity-grams in the H and Fe i 6569 Å lines has been made at a rate of 12 h–1 of McMath Region 10385 from 26 to 29 October, 1969. The 14 flares observed during this period have been studied in relation to the configuration and changes in the magnetic and velocity fields. There was little correlation between flare position and the evolutionary changes in the photospheric magnetic and velocity field, except at large central meridian distances where the velocity observations suggested shearing taking place at flare locations. At central meridian distances > 30° we found that flares are located in areas of low line-of-sight photospheric velocity surrounded by higher velocity hills. The one exception to this was the only flare which produced a surge. Blue-shifted velocity changes in the photosphere of 0.3 to 1 km s–1 were observed in localized areas at the times of 8 of 14 flares studied.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

2.
Z. Švestka 《Solar physics》1971,19(1):202-206
Under the assumption that white-light flares are caused by energetic particles penetrating into the photosphere (vestka, 1970a; Najita and Orrall, 1970) the known number of protons needed for the white-light emission is used to obtain an estimate of the production of neutrons occurring at the same time. In the case of the white-light flare of 23 May, 1967, the peak flux of neutrons at the Earth distance had to exceed 3 neutrons/cm2s, thus being detectable in space. This maximum neutron flux reached the Earth as early as the time of the maximum phase of the flare in the H light. However, reasonable estimates show that flares associated with a detectable neutron flux should be fairly rare phenomena, maybe as rare as the white-light flares.On leave from the Astronomical Institute of the Czechoslovak Academy of Sciences, Ondejov.  相似文献   

3.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

4.
Recent atomic data have been used to analyze a solar flare spectrum obtained with the Goddard Space Flight Center's grating spectrometer on the OSO-5 satellite. There exist in the wavelength region 90–200 Å strong lines from each of the ions Fe xviii-Fe xxiv. The Fe xxi lines can be used as an electron density diagnostic for the 107 K plasma. From our analysis of a particular flare, we find a steep positive slope in the emission measure between 106.5 and 107.2 K and an electron density of 4 × 1011 cm–3 at 107 K. We emphasise the need for high spectral and spatial resolution observations of solar flares in this wavelength region, which has to date been largely neglected.  相似文献   

5.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

6.
We consider potential sources of infrared (1 to 1 mm) continuum in solar flares. Several mechanisms should produce detectable fluxes: in the 350 window for ground-based observations, impulsive emission will arise in synchrotron radiation from 1–10 MeV electrons, and possibly thermal (free-free) continuum from the source of the white-light flare; the hot flare plasma responsible for soft X-ray emission will also emit detectable fluxes of free-free continuum in the largest flares. At shorter wavelengths the dominant infrared emission will come from the H flare itself. Observations in the infrared wavelengths will help to complete our picture of flare structure in both the impulsive and gradual phases.  相似文献   

7.
The small-scale structure of solar magnetic fields has been studied using simultaneous recordings in the spectral lines Fe i 5250 Å and Fe i 5233 Å, obtained with the Kitt Peak multi-channel magnetograph. We find that more than 90% of the magnetic flux in active regions (excluding the sunspots), observed with a 2.4 by 2.4 aperture, is channelled through narrow filaments. This percentage is even higher in quiet areas. The field lines in a magnetic filament diverge rapidly with height, and part of the flux returns back to the neighbouring photosphere. Therefore the strong fields within a magnetic filament are surrounded by weak fields of the order of a few gauss of the opposite polarity. The field-strength distribution within a filament, including the surrounding opposite-polarity fields, seems to be almost the same for all filaments within a given active or quiet region.The analysis of a scan made during an imp. 2 flare showed that observations during and after the flare would give a fictitious decrease of the magnetic energy in the region by a factor of 2–3 due to line-profile changes during the flare.Visiting Astronomer, Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

8.
Results are presented of an investigation of solar flare X-ray spectra in the region 1.70–1.95 Å, obtained aboard the Intercosmos-4 satellite during the maximum of solar activity (October–November, 1970). With the use of 6 high resolution spectra in the region 1.85–1.87 Å the identification of lines due to 18 transitions of 2p 1s type, consisting of the resonance, intercombination and forbidden Fe xxv ion lines and the satellite Fe xxiv lines has been performed. With the use of the recent laboratory data the averaged wavelengths of the lines were obtained confirming the theoretically calculated ones with an accuracy about ± 0.0004 Å. A variable Doppler shift of the Fe xxv resonance lines was observed for the flare of November 16, 1970, which points to hot plasma motions with velocities up to 400 km s-1.  相似文献   

9.
Hei 10830 Å spectroheliograms of a major 3N two-ribbon flare occurring in Boulder Region 3885/3886 early on 4 September, 1982 are discussed and compared with H and soft X-ray observations of the event. This flare, observed for more than 60 hr in Hei 10830, was associated with the eruption of a large filament in the active region complex, the formation of coronal holes, a long-duration soft X-ray event, and was the probable source of a earthward coronal mass ejection and the largest geomagnetic storm of this solar cycle. The results of this study suggest the Hei flare is a chromospheric manifestation of the X-ray coronal loop structures associated with flares.Visitor, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

10.
Solar flare observations have been performed with the multichannel L.P.S.P. experiment on board OSO-8 NASA Satellite. Simultaneous H and K Caii, h and k Mgii, L and L Hi profiles have been recorded on the plage just before the flare, during the flare onset and relaxation phases. The different behaviour of line profiles and intensities during the flare is evidenced and indicates a downward propagation with relaxation times increasing from the upper part to the lower part of the chromosphere related to line formation processes. Using the H observed profile, an upper limit of 8 × 1013 cm-3 is derived for the electron density.  相似文献   

11.
Following the discovery of a few significant seismic sources at 6.0 mHz from the large solar flares of October 28 and 29, 2003, we have extended SOHO/MDI helioseismic observations to moderate M-class flares. We report the detection of seismic waves emitted from the β γ δ active region NOAA 9608 on September 9, 2001. A quite impulsive solar flare of type M9.5 occurred from 20:40 to 20:48 UT. We used helioseismic holography to image seismic emission from this flare into the solar interior and computed time series of egression power maps in 2.0 mHz bands centered at 3.0 and 6.0 mHz. The 6.0 mHz images show an acoustic source associated with the flare some 30 Mm across in the East – West direction and 15 Mm in the North – South direction nestled in the southern penumbra of the main sunspot of AR 9608. This coincides closely with three white-light flare kernels that appear in the sunspot penumbra. The close spatial correspondence between white-light and acoustic emission adds considerable weight to the hypothesis that the acoustic emission is driven by heating of the lower photosphere. This is further supported by a rough hydromechanical model of an acoustic transient driven by sudden heating of the low photosphere. Where direct heating of the low photosphere by protons or high-energy electrons is unrealistic, the strong association between the acoustic source and co-spatial continuum emission can be regarded as evidence supporting the back-warming hypothesis, in which the low photosphere is heated by radiation from the overlying chromosphere. This is to say that a seismic source coincident with strong, sudden radiative emission in the visible continuum spectrum indicates a photosphere sufficiently heated so as to contribute significantly to the continuum emission observed.  相似文献   

12.
Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km?s?1. These features were located near the previously reported compact acoustic (Donea and Lindsey, Astrophys. J. 630, 1168, 2005) and seismic sources (Zharkova and Zharkov, Astrophys. J. 664, 573, 2007). We examine the origin of these features and their relationship with various aspects of the flares, viz., hard X-ray emission sources and flare kernels observed at different layers: i) photosphere (white-light continuum), ii) chromosphere (Hα 6563 Å), iii) temperature minimum region (UV 1600 Å), and iv) transition region (UV 284 Å).  相似文献   

13.
Ø. Hauge  H. Sørli 《Solar physics》1973,30(2):301-308
Two new Th ii lines have been identified in the spectrum of the solar photosphere. The abundance derived from these lines together with the previously known Th ii line at 4019 Å, is log Th = 0.85 ± 0.20 in the log H = 12.00 scale. Analysis of three Pb i lines in the photospheric spectrum resulted in an abundance of log pb = 1.90 ± 0.10. The solar Th/Pb ratio is: Th/ Pb = 0.09 -0.005 0.09 .  相似文献   

14.
R. K. Sood 《Solar physics》1972,23(1):183-190
The Elliot model for solar flares predicts weak -ray emission from the flare region prior to large flares. A search has been made for such -radiation of energy > 50 MeV. The experiment was performed using balloon-borne detectors flown from an equatorial station during the 1967/1968 solar maximum. A number of small flares were observed, but no associated -rays were detected. A limit of 2.3 × 104 photons/cm2 s was placed on the emission from an importance 1N flare. The general lack of major solar activity during the period of the balloon flights precluded a test for the Elliot model.  相似文献   

15.
E. Rolli  A. Magun 《Solar physics》1995,160(1):29-40
The analysis of the dynamic evolution of the chromospheric electron density during solar flares is fundamental for the testing of solar flare models. For this purpose we developed a digital imaging spectrograph for the observation of higher Balmer lines below 400 nm with a time resolution of 1 s and an algorithm for the determination of the electron density from the observed line profiles. On January 5, 1992 a M1/1N flare was observed in H, H and Caii H and the temporal evolution of the electron density was determined. The chromospheric electron density rises several times from less than 3 × 1019 to 1 × 1020 m–3 during the hard X-ray peaks.  相似文献   

16.
Exploratory observations at 20 and 350 have determined detection thresholds for solar flares in these wavelengths. In the 20 range solar atmospheric fluctuations (the temperature field) set the basic limits on flare detectability at 5K; at 350 the extinction in the Earth's atmosphere provides the basic limitation of 30K. These thresholds are low enough for the successful detection of several infrared-emitting components of large flares. Limited observing time and lack of solar activity have prevented observations of large flares up to the present, but the techniques promise to be extremely useful in the future.The upper limits obtained thus far, for subflares, indicate that the thickness of the H flare region does not exceed 10 km. This result confirms the conclusion of Suemoto and Hiei (1959) regarding the small effective thickness of the H-emitting regions in solar flares.  相似文献   

17.
Visual impressions and a photograph of an intense white light flare are presented. A densitometer trace across the 4 July 1974 flare showing relative intensity of the white light flare, photosphere and umbra is also shown. A second white light flare is suspected on a photograph taken 43/4 hrs later. Both flares coincide in time with major H-flare activity.  相似文献   

18.
The large-scale photospheric magnetic field, measured by the Mt. Wilson magnetograph, has been analyzed in terms of surface harmonics (P n m )()cosm and P n m ()sinm) for the years 1959 through 1972. Our results are as follows. The single harmonic which most often characterized the general solar magnetic field throughout the period of observation corresponds to a dipole lying in the plane of the equator (2 sectors, n = m = 1). This 2-sector harmonic was particularly dominant during the active years of solar cycles 19 and 20. The north-south dipole harmonic (n = 1, m = 0) was prominent only during quiet years and was relatively insignificant during the active years. (The derived north-south dipole includes magnetic fields from the entire solar surface and does not necessarily correlate with either the dipole-like appearance of the polar regions of the Sun or with the weak polar magnetic fields.) The 4-sector structure (n = m = 2) was prominent, and often dominant, at various times throughout the cycle. A 6-sector structure (n = m = 3) occasionally became dominant for very brief periods during the active years. Contributions to the general solar magnetic field from harmonics of principal index 4 n 9 were generally relatively small throughout this entire solar cycle with one outstanding exception. For a period of several months prior to the large August 1972 flares, the global photospheric field was dominated by an n = 5 harmonic; this harmonic returned to a low value shortly after the August 1972 flare events. Rapid changes in the global harmonics, in particular, relative and absolute changes in the contributions of harmonics of different principal index n to the global field, imply that the global solar field is not very deep or that very strong fluid flows connect the photosphere with deeper layers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
Behind-the-limb flares provide a unique opportunity for the study of vertical source structures of microwave bursts and dynamic flare processes. Based on complex observational data related to the outstanding solar proton event on 16 February, 1984, the development of burst emission at a height z 200000 km above the photosphere has been investigated. A comparison with the associated X-ray emission measured aboard various spacecraft yields a time lag of about 1 min between the onset of the unocculted impulsive HXR-emission and the onsets of the X-ray and microwave emissions occulted by the solar limb. The lag corresponds to a range of speeds of the propagation of the flare volume of about 3000–5000 km s–1. Considering competing transport agents that could account for such expansion of the source volume, a qualitative model of shock-wave activation of loops successively reaching into larger coronal heights is proposed.From a discussion of the possible emission processes involved, conclusions about the magnetic field, electron density, and particle energies have been obtained.  相似文献   

20.
The 1.4–22.4 Å range of the soft X-ray spectrum includes a multitude of emission lines which are important for the diagnosis of plasmas in the 1.5–50 million degree temperature range. In particular, the hydrogen and helium-like ions of all abundant solar elements with Z > 7 have their primary transitions in this region and these are especially useful for solar flare and active region studies. The soft X-ray polychromator (XRP) is a high resolution experiment working in this spectral region. The XRP consists of two instruments with a common control, data handling and power system. The bent crystal spectrometer is designed for high time resolution studies in lines of Fe i-Fe xxvi and Ca xix. The flat crystal scanning spectrometer provides for 7 channel polychromatic mapping of flares and active regions in the resonance lines of O viii, Ne ix, Mg xi, Si xiii, S xv, Ca xix, and Fe xxv with 14 spatial resolution. In its spectral scanning mode it covers essentially the entire 1.4–22.5 Å region.This paper summarizes the scientific objectives of the XRP experiment and describes the characteristics and capabilities of the two instruments. Sufficient technical information for experiment feasibility studies is included and the resources and procedures planned for the use of the XRP within the context of the Solar Maximum Mission is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号