where k (M− 2 s− 1) can be determined from the
in the pH range 2 to 5, from 5 to 40 °C and 0.01 to 1 M.The effect of pH and ionic strength on the reaction suggest that the rates are due to
where H2A = H2CrO4, HA = HCrO4, H2B = H2SO3 and HB = HSO3. The overall rate expression over the investigated pH range can be determined from
k=kH2A–H2B(αH2A)(αH2B)2+kHA–H2B(αHA)(αH2B)2+kH2A–HB(αH2A)(αHB)2
with kH2A−H2B = 5.0 × 107, kHA–H2B = 1.5 × 106 and kH2A–HB = 6.7 × 107.Fe(III) in the range 1.5 to 20 μM exerts a small catalytic effect on the reaction and significantly lowers the initial concentration of Cr(VI) compared to the nominal value. Contrary to Fe(III), formaldehyde (20 to 200 μM) reacts with S(IV) to form the hydroxymethanesulfonate adduct (CH2OHSO3), which does not react with Cr(VI). Major cations Mg2+ and some minor elements such as Ba2+ and Cu2+ did not affect the rates. The application of this rate law to environmental conditions suggest that this reaction may have a role in acidic solutions (aerosols and fog droplets). This reaction becomes more important in the presence of high Fe(III) and low HMS concentrations, contributing to affect the atmospheric transport of chromium species and the distribution of redox species of chromium, which reach surface water from atmospheric depositions.  相似文献   

19.
ADSORPTION ACTION OF BASIC ZINC CARBONATE ADSORBENT ON URANIUM IN NATURAL SEAWATER     
李轩如  陈连志  刘石玉  洪玉英 《海洋学报(英文版)》1986,5(1):76-81
1. The adsorption action of basic zinc carbonate adsorbent on uranium in natural seawater can be expressed with the following formula of adsorption isotherm:C=k(U*)n = 8.51× 10-1(U*)0.49,where C is the concentration of uranium on adsorbent; U* is content of uranium in natural seawater employed.2. when the quantity of basic zinc carbonate adsorbent (T) is constant, with the increase of natural seawater quantity through the adsorption column (G), also increased are the adsorption content of uranium of the adsorbent (U), the concentration of uranium on the adsorbent (C) and the concentration of residual uranium (C0*) in natural seawater after adsorbing uranium, while the rate of recovery of uranium (R) is decreased. With the increase of (G) the coefficient of distribution (Kd) decreases to a certain value and then a little rises again.  相似文献   

20.
Observational studies on association between eastward equatorial jet and Indian Ocean dipole   总被引:1,自引:0,他引:1  
Peter C. Chu 《Journal of Oceanography》2010,66(3):429-434
Association between weakening/strengthening of the eastward equatorial jet (EEJ) in both seasons and the Indian Ocean dipole (IOD) was investigated using two independent observational datasets (October 1992 to September 2007): (a) the dipole mode index I(t) and (b) the 5-day Ocean Surface Current Analyses-Realtime (OSCAR) obtained from satellite altimetry and scatterometer data, which has strong seasonal variability, with the EEJ occurrence in spring and fall, shown from the time-longitude cross-section of equatorial zonal velocity (1°S-1°N). The association is detected in two ways. First, time series of averaged zonal velocity over (1°S-1°N, 42°E-100°E) U(t) shows a close association to the dipole mode index: positive IOD events (1994, 1997, 2006) correspond to negative U (westward equatorial current), and negative IOD events (1994, 1995, 1999, 2005) correspond to positive U (eastward equatorial current). Second, the EEJ weakening/strengthening is represented by the streamfunction anomaly relative to its climatological monthly mean fields. The streamfunction anomaly is further analyzed using the empirical orthogonal function (EOF) method. The first EOF mode accounts for 55% of the variance with corresponding principal component A (1)(t) showing evident pattern of EEJ strengthening and weakening. The correlation coefficient between I(t) and A (1)(t) is around 0.49. This may confirm the linkage in some sense (only EOF-1 considered) between the positive (negative) IOD events and the weakening (strengthening) of the EEJ. The dipole pattern of lag-correlation between the sea surface temperature anomaly and U confirms the connection between the EEJ weakening/strengthening and the IOD events.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The eddy viscosities for the steady and the periodic components of combined wave-current flows have been studied quantitatively from the presently available experimental data. It has been found that inside the boundary interaction layer [z < δ] the eddy viscosity εc for the steady flow is increased in the presence of waves while outside the boundary interaction layer [z >δ] it is affected little by the wave motion, and that the eddy viscosity εw for the wave motion in the boundary layer is independent of the current strength U*. On the other hand, a new eddy viscosity model is presented to give a good prediction of the velocity distributions of the waves and currents in comparison with experimental data.  相似文献   

2.
In this paper, the characteristics of the bottom boundary layer flow induced by nonlinear, asymmetric shoaling waves, propagating over a smooth bed of 1/15 uniform slope, is experimentally investigated. Flow visualization technique with thin-layered fluorescent dye was first used to observe the variation of the flow structure, and a laser Doppler velocimeter was then employed to measure the horizontal velocity, U.The bottom boundary layer flow is found to be laminar except within a small region near the breaking point. The vertical distribution of the phase-averaged velocity U at each phase is non-uniform, which is directly affected by the mean velocity, . The magnitude of increases from zero at the bottom to a local positive maximum at about z/δ2.02.5 (where z is the height above the sloping bottom and δ is the Stokes layer thickness), then decreases gradually to zero at z/δ6.07.0 approximately, and finally becomes negative as z/δ increases further. Moreover, as waves propagate towards shallower water, the rate of increase in the maximum onshore oscillating velocity component is greater than that of the offshore counterpart except near the breaking point. The free stream velocities in the profiles of the maximum onshore and offshore oscillating velocity components, and are found to appear at z/δ≥6.0. This implies that, if the Stokes layer thickness is used as a length scale, the non-dimensionalized boundary layer thickness remains constant in the pre-breaking zone. Although is greater than and the asymmetry of the maximum free stream velocities (i.e. ) increases with decrease of water depth, a universal similar profile can be established by plotting z/δ versus ( ) or ( ). The final non-dimensional profile is symmetric and unique for the distributions of the maximum onshore and offshore oscillating velocity components within the bottom boundary layer, which are induced by nonlinear, asymmetric shoaling waves crossing the pre-breaking zone.  相似文献   

3.
Improved data collection and processing technologies along with the use of high resolution spectral techniques soon will make it possible to obtain estimates of the Kelvin wave amplitude function A(θ), ship speed U, and ship heading α from synthetic aperture radar images of ship wakes. This paper presents a series of methods for deriving additional hull characteristics such as the length L, volume V, and offsets ζ(x,z) from this spectral and surface wave information. The first method estimates the ship length by taking the Fourier transform of the slope amplitude function |kA|. The remaining estimates make use of the hull inversion code developed at the University of Michigan by Wu in 1991. The accuracy of the hull offsets predicted by the code is first determined for various options for solving the linear inversion problem. In this case, both the magnitude and phase of A(θ) are known in addition to the hull draft H. Since the draft is not often known a priori, the accuracy of the code is determined next by predicting the volume of the ship for an approximate though plausible input value of H. Finally, the accuracy of the non-linear inversion problem of obtaining offsets along the entire hull is investigated when only the magnitude but not the phase of A(θ) is known.  相似文献   

4.
5.
Two models, a spectral refraction model (Longuet-Higgins) and a parabolic equation method (PEM) refraction-diffraction model (Kirby), are used to simulate the propagation of surface gravity waves across the Southern California Bight. The Bight contains numerous offshore islands and shoals and is significantly larger (≈ 300 km by 300 km) than regions typically studied with these models. The effects of complex bathymetry on the transformation of incident wave directional spectra, S0(f,θ0), which are very narrow in both frequency and direction are difficult to model accurately. As S0(f,θ0) becomes broader in both dimensions, agreement between the models improves and the spectra predicted at coastal sites become less sensitive to errors in the bathymetry grid, to tidal changes in the mean water depth, and to uncertainty in S0(f,θ0) itself. The smoothing associated with even relatively narrow (0.01 Hz-5° bandwidth) S0(f,θ0) is usually sufficient to bring the model predictions of shallow water energy into at least qualitative agreement. However, neither model is accurate at highly sheltered sites. The importance of diffraction degrades the predictions of the refraction model, and a positive bias [O (10%) of the deep ocean energy] in the refraction-diffraction model estimates, believed to stem from numerical “noise” (Kirby), may be comparable to the low wave energy. The best agreement between the predicted spectra generally occurs at moderately exposed locations in deeper waters within the Bight, away from shallow water diffractive effects and in the far-field of the islands. In these cases, the differences between the models are small, comparable to the errors caused by tidal fluctuations in water depth as waves propagate across the Bight. The accuracy of predicted energies at these sites is likely to be limited by the uncertainty in specifying S0(f,θ0).  相似文献   

6.
Simple prediction methods are proposed to estimate the wave induced pressures on smooth impermeable seawalls. Based on the physics of the wave structure interaction, the sloped seawall is divided into a total of five zones (zones 1, 2 and 3 during run-up (corresponding pressures are called as positive pressures) and zones 4 and 5 during run-down (corresponding pressures are called negative pressures)) (Fig. 1). Zone 1 (0<z<dHi/2), where the wave pressure is governed by the partial reflection and phase shift; Zone 2 (dHi/2<z<d), where the effect of wave breaking and turbulence is significant; Zone 3 (d<z<Run-up height), where the pressure is induced by the run-up water; Zone 4 (Run-down<z<d), where the wave pressure is caused by the run-down effect and Zone 5 (0<z<d-Run down), where the negative wave pressures are due to partial reflection and phase shift effects. Here d is the water depth at the toe of the seawall, Hi is the incident wave height and z is the vertical elevation with toe of the seawall as origin and z is positive upward. For wave pressure prediction in zones 1 and 5, the empirical formula proposed by Ahrens et al. (1993) to estimate the wave reflection and Sutherland and Donoghue's recommendations (1998) for the estimation of phase shift of the waves caused by the sloped structures are used. Multiple regression analysis is carried out on the measured pressure data and empirical formulas are proposed for zones 2, 3 and 4. The recommendations of Van der Meer and Breteler (1990) and Schüttrumpf et al. (1994) for the prediction of wave run-down are used for pressure prediction at zone 4. Comparison of the proposed prediction formulas with the experimental results reveal that the prediction methods are good enough for practical purposes. The present study also shows a strong relation between wave reflection, wave run-up, wave run-down and phase shift of waves on wave pressures on the seawalls.  相似文献   

7.
Experiments are performed on a flat plate with a transverse suction slit in the Reynolds number range 5 × 105 < Re < 1.1 × 106. Mean velocity profiles, RMS values are measured with hot wire anemometry. Friction velocity is numerically calculated. The experiments showed that a classical boundary layer parameter α is related to the suction coefficient Sc with an equation of the form: .The value of A seems to depend strongly on the relative location with respect to suction slit and possibly weakly on Reynolds number.  相似文献   

8.
A 1/8° global version of the Navy Coastal Ocean Model (NCOM) is described with details of its formulation, implementation, and configuration of the vertical coordinate. NCOM is a baroclinic, hydrostatic, Boussinesq, free-surface ocean model that allows its vertical coordinate to consist of σ coordinates for the upper layers and z-levels below a user-specified depth. This flexibility allows implementation of a hybrid σz coordinate system that is expected to mitigate some of the weaknesses that can be associated with either pure coordinate option. For the global NCOM application, the σz coordinate is used to allow terrain-following σ coordinates in the upper ocean, providing better resolution and topographic fidelity in shelf regions where flow is most sensitive to its representation. Including z coordinates for deeper regions efficiently maintains high near-surface vertical resolution in the open ocean. Investigation into the impact of the selected coordinate system focuses on differences between atmospherically-forced free-running (no assimilation) global solutions using σz and pure z coordinates. Comparisons with independent temperature observations indicate that global NCOM using the σz coordinate has improved skill relative to its z coordinate implementation. Among other metrics, we show that in comparison with time series of surface temperature from National Oceanic Data Center (NODC) buoys, mostly located in coastal regions, root mean squared differences (RMSD) improved for 63% and correlation improved for 71% of the stations when σz coordinates were used instead of pure z. For the exclusively open-ocean Tropical Atmosphere-Ocean (TAO) buoys, differences between the simulations were small, with the σz showing smaller RMSD for 45% of the stations and higher correlation for 65% of the stations. Additional comparisons using temperature profile observations further confirm a tendency for improved performance using the hybrid σz coordinates.  相似文献   

9.
A flat plate in pitching motion is considered as a fundamental source of locomotion in the general context of marine propulsion. The experimental as well as numerical investigation is carried out at a relatively small Reynold number of 2000 based on the plate length c and the inflow velocity U. The plate oscillates sinusoidally in pitch about its 1/3  c axis and the peak to peak amplitude of motion is 20°. The reduced frequency of oscillation k = πfc/U is considered as a key parameter and it may vary between 1 and 5. The underlying fluid-structure problem is numerically solved using a compact finite-differences Navier–Stokes solution procedure and the numerical solution is compared with Particle Image Velocimetry (PIV) measurements of the flow field around the pitching foil experimental device mounted in a water-channel. A good agreement is found between the numerical and experimental results and the threshold oscillation frequency beyond which the wake exhibits a reverse von Kármán street pattern is determined. Above threshold, the mean velocity in the wake exhibits jet-like profiles with velocity excess, which is generally considered as the footprint of thrust production. The forces exerted on the plate are extracted from the numerical simulation results and it is shown, that reliable predictions for possible thrust production can be inferred from a conventional experimental control volume analysis, only when besides the wake's mean flow the contributions from the velocity fluctuation and the pressure term are taken into account.  相似文献   

10.
Relationships between the surface concentrations of phytoplankton pigments (C ph), total suspended matter (C sm), particulate organic carbon (C poc), and total suspended phosphorus (C sp), on the one hand, and the relative water transparency determined through the Secchi disc depth (z d), on the other, are analysed using the data compiled in the Guinean coastal waters (Tabunsu and Tonkima river estuaries) during November–December 1990. The functions ofC ph,C sm=f(z d) are matched up with the experimentally derived data, as well as with the model bio-optical state of seawater. The general regression equation has been calculated using the data characteristic of various types of water.Translated by Vladimir A. Puchkin.  相似文献   

11.
Comparing single beam and multibeam echo sounder data where surveys overlap we find that: 95% of multibeam measurements are repeatable to within 0.47% of depth; older single beam data can be at least as accurate as multibeam; single beam and multibeam profiles show excellent agreement at full-wavelengths longer than 4 km; archival sounding errors are not Gaussian; 95% of archival soundings in the northwest Atlantic are accurate to within 1.6% of depth; the 95th percentile error is about five times greater in pre-1969 data than in post-1968 data; many of the largest errors are located over large seafloor slopes, where small navigation errors can lead to large depth errors. Our uncertainty model has the form σ 2 = a 2 + (bz)2 + (cs)2, where 2σ is approximately the 95th percentile error, z is the depth, s is the slope, and a, b, c are constants we determine separately for pre-1969 and post-1968 data.  相似文献   

12.
Methods of rapid analysis of the chlorophyll-a concentration vertical profile by the spectra of incident solar radiation are suggested. The methods are applicable for the ocean layerz=20–80 m containing waters of type 1 (by Morel's classification). Testing of the methods underin situ conditions showed that they can be used to reconstructC ch(z) profiles, with a relative error of 10% and a root-meansquare error of 20–30% at most, provided the data are calibrated using field observations conducted at two or three sites in the test area.Translated by Vladimir A. Puchkin.  相似文献   

13.
The dynamic processes of bore propagation over a uniform slope are studied numerically using a 2-D Reynolds Averaged Navier–Stokes (RANS) solver, coupled to a non-linear k − ε turbulence closure and a volume of fluid (VOF) method. The dam-break mechanism is used to generate bores in a constant depth region. Present numerical results for the ensemble-averaged flow field are compared with existing experimental data as well as theoretical and numerical results based on non-linear shallow water (NSW) equations. Reasonable agreement between the present numerical solutions and experimental data is observed. Using the numerical results, small-scale bore behaviors and flow features, such as the bore collapse process near the still-water shoreline, the ‘mini-collapse’ during the runup phase and the ‘back-wash bore’ in the down-rush phase, are described. In the case of a strong bore, the evolution of the averaged turbulence kinetic energy (TKE) over the swash zone consists of two phases: in the region near the still-water shoreline, the production and the dissipation of TKE are roughly in balance; in the region farther landwards of the still-water shoreline, the TKE decay rate is very close to that of homogeneous grid turbulence. On the other hand, in the case of a weak bore, the bore collapse generated turbulence is confined near the bottom boundary layer and the TKE decays at a much slower rate.  相似文献   

14.
The sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide at low ionic strength (0.01 M ≤ I ≤ 0.09 M) was investigated over a wide range of pH (3.9 ≤ pH ≤ 7.1). YREE distribution coefficients, defined as iKFe = [MSi]T / (MT[Fe3+]S), where [MSi]T is the concentration of YREE sorbed by the precipitate, MT is the total YREE concentration in solution, and [Fe3+]S is the concentration of precipitated iron, are weakly dependent on ionic strength but strongly dependent on pH. For each YREE, the pH dependence of log iKFe is highly linear over the investigated pH range. The slopes of log iKFe versus pH regressions range between 1.43 ± 0.04 for La and 1.55 ± 0.03 for Lu. Distribution coefficients are well described by an equation of the form iKFe = (Sβ1[H+]− 1 + Sβ2[H+]− 2) / (SK1[H+] + 1), where Sβn are stability constants for YREE sorption by surface hydroxyl groups and SK1 is a ferric hydroxide surface protonation constant. Best-fit estimates of Sβn for each YREE were obtained with log SK1 = 4.76. Distribution coefficient predictions, using this two-site surface complexation model, accurately describe the log iKFe patterns obtained in the present study, as well as distribution coefficient patterns obtained in previous studies at near-neutral pH. Modeled log iKFe results were used to predict YREE sorption patterns appropriate to the open ocean by accounting for YREE solution complexation with the major inorganic YREE ligands in seawater. The predicted log iKFe′ pattern for seawater, while distinctly different from log iKFe observations in synthetic solutions at low ionic strength, is in good agreement with results for natural seawater obtained by others.  相似文献   

15.
Realistic representation of sea ice in ocean models involves the use of a non-linear free-surface, a real freshwater flux and observance of requisite conservation laws. We show here that these properties can be achieved in practice through use of a rescaled vertical coordinate “z*” in z-coordinate models that allows one to follow undulations in the free-surface under sea ice loading. In particular, the adoption of “z*” avoids the difficult issue of vanishing levels under thick ice.Details of the implementation within MITgcm are provided. A high resolution global ocean sea ice simulation illustrates the robustness of the z* formulation and reveals a source of oceanic variability associated with sea ice dynamics and ice-loading effects. The use of the z* coordinate allows one to achieve perfect conservation of fresh water, heat and salt, as shown in extended integration of coupled ocean sea ice atmospheric model.  相似文献   

16.
An accurate numerical prediction of the oceanic upper layer velocity is a demanding requirement for many applications at sea and is a function of several near-surface processes that need to be incorporated in a numerical model. Among them, we assess the effects of vertical resolution, different vertical mixing parameterization (the so-called Generic Length Scale –GLS– set of kε, kω, gen, and the Mellor–Yamada), and surface roughness values on turbulent kinetic energy (k) injection from breaking waves.First, we modified the GLS turbulence closure formulation in the Regional Ocean Modeling System (ROMS) to incorporate the surface flux of turbulent kinetic energy due to wave breaking. Then, we applied the model to idealized test cases, exploring the sensitivity to the above mentioned factors. Last, the model was applied to a realistic situation in the Adriatic Sea driven by numerical meteorological forcings and river discharges. In this case, numerical drifters were released during an intense episode of Bora winds that occurred in mid-February 2003, and their trajectories compared to the displacement of satellite-tracked drifters deployed during the ADRIA02-03 sea-truth campaign.Results indicted that the inclusion of the wave breaking process helps improve the accuracy of the numerical simulations, subject to an increase in the typical value of the surface roughness z0. Specifically, the best performance was obtained using αCH = 56,000 in the Charnok formula, the wave breaking parameterization activated, kε as the turbulence closure model. With these options, the relative error with respect to the average distance of the drifter was about 25% (5.5 km/day). The most sensitive factors in the model were found to be the value of αCH enhanced with respect to a standard value, followed by the adoption of wave breaking parameterization and the particular turbulence closure model selected.  相似文献   

17.
Alkenone unsaturation indices (UK37 and UK′37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK′37) values and temperature, and a significant negative correlation between UK37 (and UK′37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)−0.162, R2=0.84, UK′37=0.013 (T)−0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303–2310] and Müller et al. [1998. Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, 1757–1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the UK37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25 °C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones.  相似文献   

18.
The rates of the reduction of Cr(VI) with S(IV) were measured in deaerated NaCl solution as a function of pH, temperature and ionic strength. The rates of the reaction were found to be first order with respect to Cr(VI) and second order with respect to S(IV), in agreement with previous results obtained at concentrations two order higher than the present study. The reaction also showed a first-order dependence of the rates on the concentration of the proton and a small influence of temperature with an apparent energy of activation ΔHapp of 22.8 ± 3.4 kJ/mol. The rates were independent of ionic strength from 0.01 to 1 M. The rate of Cr(VI) reduction is described by the general expression
−d[Cr(VI)]/dt=k[Cr(VI)][S(IV)]2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号