首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
It has been shown that the operator‐splitting method (OSM) provides explicit and unconditionally stable solutions for quasi‐static pseudo‐dynamic substructure testing. However, the OSM provides only an explicit target displacement but not an explicit target velocity, so that it is essentially an implicit method for real‐time substructure testing (RST) when the velocity‐dependent restoring force is considered. This paper proposes a target velocity formulation based on the forward difference of the predicted displacements so as to render the OSM explicit for RST. The stability and accuracy of the resulting OSM‐RST algorithm are investigated. It is shown that the OSM‐RST is unconditionally stable so long as the non‐linear stiffness and damping are of the softening type (i.e. the tangent stiffness and damping never exceed the initial values). The stability of the OSM‐RST for structures with infinite tangent damping coefficient or stiffness is also proved, and the stability of the method for MDOF structures with a non‐classical damping matrix is demonstrated by an energy criterion. The effects of actuator delay and compensation are analysed based on the bilinear approximation of the actuator step response. Experiments on damped SDOF and MDOF structures verify that the stability of the OSM‐RST is preserved when the experimental substructure generates velocity‐dependent reaction forces, whereas the stability of real‐time substructure tests based on the central difference method is worsened by the damping of the specimen. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Real‐time pseudodynamic (PSD) and hybrid PSD test methods are experimental techniques to obtain the response of structures, where restoring force feedback is used by an integration algorithm to generate command displacements. Time delays in the restoring force feedback from the physical test structure and/or the analytical substructure cause inaccuracies and can potentially destabilize the system. In this paper a method for investigating the stability of structural systems involved in real‐time PSD and hybrid PSD tests with multiple sources of delay is presented. The method involves the use of the pseudodelay technique to perform an exact mapping of fixed delay terms to determine the stability boundary. The approach described here is intended to be a practical one that enables the requirements for a real‐time testing system to be established in terms of system parameters when multiple sources of delay exist. Several real‐time testing scenarios with delay that include single degree of freedom (SDOF) and multi‐degree of freedom (MDOF) real‐time PSD/hybrid PSD tests are analyzed to illustrate the method. From the stability analysis of the real‐time hybrid testing of an SDOF test structure, delay‐independent stability with respect to either experimental or analytical substructure delay is shown to exist. The conditions that the structural properties must satisfy in order for delay‐independent stability to exist are derived. Real‐time hybrid PSD testing of an MDOF structure equipped with a passive damper is also investigated, where observations from six different cases related to the stability plane behavior are summarized. Throughout this study, root locus plots are used to provide insight and explanation of the behavior of the stability boundaries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Real‐time pseudodynamic (PSD) testing is an experimental technique for evaluating the dynamic behaviour of a complex structure. During the test, when the targeted command displacements are not achieved by the test structure, or a delay in the measured restoring forces from the test structure exists, the reliability of the testing method is impaired. The stability and accuracy of real‐time PSD testing in the presence of amplitude error and a time delay in the restoring force is presented. Systems consisting of an elastic single degree of freedom (SDOF) structure with load‐rate independent and dependent restoring forces are considered. Bode plots are used to assess the effects of amplitude error and a time delay on the steady‐state accuracy of the system. A method called the pseudodelay technique is used to derive the exact solution to the delay differential equation for the critical time delay that causes instability of the system. The solution is expressed in terms of the test structure parameters (mass, damping, stiffness). An error in the restoring force amplitude is shown to degrade the accuracy of a real‐time PSD test but not destabilize the system, while a time delay can lead to instability. Example calculations are performed for determining the critical time delay, and numerical simulations with both a constant delay and variable delay in the restoring force are shown to agree well with the stability limit for the system based on the critical time delay solution. The simulation models are also used to investigate the effects of a time delay in the PSD test of an inelastic SDOF system. The effect of energy dissipation in an inelastic structure increases the limit for the critical time delay, due to the energy removed from the system by the energy dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper studies the stability of the central difference method (CDM) for real‐time substructure test considering specimen mass. Because the standard CDM is implicit in terms of acceleration, to avoid iteration, an explicit acceleration formulation is assumed for its implementation in real‐time dynamic substructure testing. The analytical work shows that the stability of the algorithm decreases with increasing specimen mass if the experimental substructure is a pure inertia specimen. The algorithm becomes unstable however small the time integration interval is, when the mass of specimen equal or greater than that of its numerical counterpart. For the case of dynamic specimen, the algorithm is unstable when there is no damping in the whole test structure; a damping will make the algorithm stable conditionally. Part of the analytical results is validated through an actual test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
基于虚拟振动台的实时耦联动力仿真试验   总被引:1,自引:1,他引:0  
实时耦联动力试验(RTDHT)是一种将物理模型试验与数值求解计算实时耦联在一起的新型结构动力试验方法.本文采用SIMULINK对液压伺服振动台系统进行了仿真,建立虚拟振动台模型对真实振动台进行离线调试.并提出基于虚拟振动台进行实时耦联动力仿真试验,从而对真实实时耦联动力试验进行指导的思想.仿真结果表明,虚拟振动台可以很好地仿真真实振动台的动力特性,离线调试结果应用于真实振动台能够得到优良的控制性能;基于虚拟振动台的实时耦联动力仿真试验能够反映真实实时耦联动力试验中存在的时滞以及由此而可能导致的系统失稳问题.采用预测补偿算法对时滞进行了补偿,结果表明补偿算法消除了时滞的影响,试验系统稳定且试验结果与数值计算结果吻合得较好.基于虚拟振动台对实时耦联动力试验进行研究,既能对真实试验提出指导又可避免试验系统失稳对设备的损害,是一种实用且必要的研究手段.  相似文献   

7.
Real‐time dynamic substructuring is an experimental technique for testing the dynamic behaviour of complex structures. It involves creating a hybrid model of the entire structure by combining an experimental test piece—the substructure—with a numerical model describing the remainder of the system. The technique is useful when it is impractical to experimentally test the entire structure or complete numerical modelling is insufficient. In this paper, we focus on the influence of delay in the system, which is generally due to the inherent dynamics of the transfer systems (actuators) used for structural testing. This naturally gives rise to a delay differential equation (DDE) model of the substructured system. With the case of a substructured system consisting of a single mass–spring oscillator we demonstrate how a DDE model can be used to understand the influence of the response delay of the actuator. Specifically, we describe a number of methods for identifying the critical time delay above which the system becomes unstable. Because of the low damping in many large structures a typical situation is that a substructuring test would operate in an unstable region if additional techniques were not implemented in practice. We demonstrate with an adaptive delay compensation technique that the substructured mass–spring oscillator system can be stabilized successfully in an experiment. The approach of DDE modelling also allows us to determine the dependence of the critical delay on the parameters of the delay compensation scheme. Using this approach we develop an over‐compensation scheme that will help ensure stable experimental testing from initiation to steady state operation. This technique is particularly suited to stiff structures or those with very low natural damping as regularly encountered in structural engineering. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
将CR方法运用到振动台子结构混合试验中,并结合作动器的时滞和外插时滞补偿方法进行了研究.文中将改造的中心差分法、改造的算子分解法、改造的Chang方法、改造的显式Newmark方法均与CR方法进行了对比分析.结果表明,改造的算子分解法的稳定性最差,当不考虑阻尼影响时改造的显式Newmark方法的稳定界限为2,改造的中心...  相似文献   

9.
This paper presents a family of semi‐active control algorithms termed as active interaction control (AIC) used for seismic response control of civil structures. AIC control algorithms include active interface damping (AID), optimal connection strategy (OCS) and tuned interaction damping (TID). A typical SDOF AIC system consists of a primary structure, an auxiliary structure and an interaction element. The auxiliary structure typically has stiffness comparable to that of the primary structure while its natural frequency is much higher than that of the primary structure. Interactions between the primary and the auxiliary structures are defined by specific AIC control logic such that vibrational energy is extracted from the primary structure into the auxiliary structure during a locking phase and dissipated in the auxiliary structure in the subsequent unlocking phase. The stability of AIC control algorithms is shown using the Lyapunov direct method. The efficacy of AIC control algorithms is demonstrated by the results of numerical simulations of SDOF systems subjected to seismic ground motions. Practical issues such as sampling period and time delay are also investigated in this study. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

11.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

12.
振动台实时耦联动力试验系统构建解决方案   总被引:2,自引:1,他引:1  
实时耦联动力试验(RTDHT)是一种将物理模型试验和数值求解计算实时耦联在一起进行整体结构动力反应分析的新型结构动力试验方法。构建实时耦联动力试验系统将面临数值子结构实时计算、数据实时传输、加载器精确加载等问题。本文首先以清华大学新近建成的一套基于振动台的实时耦联动力试验系统为例,对试验系统构建中面临的问题以及相应的解决方案进行了阐述,对构建实时耦联动力试验系统提出了一些指导性的建议。随后简要介绍了利用该系统已经进行的一些实时耦联动力试验,并对实时耦联动力试验可能的应用前景进行了探讨。  相似文献   

13.
Seismic demand estimation for a structure is a critical issue for seismic performance assessment so that the potential damage can be estimated realistically. Many researchers proposed simplified methods to estimate the demand of a structure under strong ground motions. However, most of them did not consider degradation and collapse potential of the structures. Even some of theme considered the degradation effect, stiffness and strength degradation effects were considered separately without collapse potential caused by dynamic instability. In this study, collapse potential of SDOF systems caused by dynamic instability with stiffness and strength degradation has been investigated. Nonlinear time history analyses were performed, using an energy-based, strength and stiffness degraded hysteretic model that considers the collapse potential, with 160 earthquake acceleration time histories. An equation was proposed for the estimation of collapse period of SDOF systems as a function of certain strength reduction factor, ductility level and post-capping stiffness ratio. Finally, effects of parameters of the considered hysteretic model and local site conditions on the collapse period were investigated.  相似文献   

14.
Liquid motions in shallow Tuned Liquid Dampers (TLDs) with rectangular, circular, and annular tanks, subject to harmonic base excitation, are measured experimentally. Using a Single-Degree-of-Freedom (SDOF) Tuned Mass Damper (TMD) analogy, equivalent mass, stiffness and damping of the TLD are calibrated from the experimental results. These parameters are functions of the TLD base amplitude. Some important properties of the TLD are discussed on the basis of these results.  相似文献   

15.
The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.  相似文献   

16.
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.  相似文献   

17.
多级串联非比例阻尼隔震结构地震响应分析   总被引:2,自引:1,他引:1       下载免费PDF全文
建立了多级串联非比例阻尼隔震结构动力分析模型;引用分区瑞利阻尼模型将非比例阻尼矩阵分解为瑞利阻尼矩阵和体现非比例阻尼的余项阻尼矩阵,推导出结构的阻尼矩阵;并编制了MATLAB动力时程分析程序,对一实际隔震工程进行地震响应分析.结果表明:随着下部结构刚度的增加,结构的层剪力比和隔震层位移响应峰值均趋向于基础隔震结构的对应值;当下部结构为一层,且层间刚度大于上部结构底层层间刚度4~6倍时,可以近似按基础隔震结构进行动力分析.  相似文献   

18.
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.  相似文献   

19.
This research work focuses on the analysis of the hysteretic seismic behaviour of inelastic SDOF systems equipped with viscous dampers. In detail, it is aimed at obtaining a practical tool useful for the seismic design of building structures with added dampers, within the framework of the traditional seismic design based on ductility. The objective is to evaluate the appropriate force reduction factor for highly damped (i.e. damping ratio greater than 5 %) SDOF systems able to guarantee a prescribed level of structural safety.  相似文献   

20.
The dynamic behaviour of two adjacent single‐degree‐of‐freedom (SDOF) structures connected with a viscous damper is studied under base acceleration. The base acceleration is modelled as harmonic excitation as well as stationary white‐noise random process. The governing equations of motion of the connected system are derived and solved for relative displacement and absolute acceleration responses of connected structures. The response of structures is found to be reduced by connecting with a viscous damper having appropriate damping. For undamped SDOF structures, the closed‐form expressions for optimum damping of viscous damper for minimum steady state as well as minimum mean square relative displacement and absolute acceleration of either of the connected SDOF structures are derived. The optimum damper damping is found to be functions of mass and frequency ratio of two connected structures. Further, numerical results had indicated that the damping of the connected structures does not have noticeable effects on the optimum damper damping and the corresponding optimized response. This implies that the derived closed‐form expressions for optimum damper damping of undamped structures can also be used in practical applications for damped structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号