首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   

2.
—?Experimental seismic event-screening capabilities are described, based on the difference of body-and surface-wave magnitudes (denoted as M s :m b ) and event depth. These capabilities have been implemented and tested at the prototype International Data Center (PIDC), based on recommendations by the IDC Technical Experts on Event Screening in June 1998. Screening scores are presented that indicate numerically the degree to which an event meets, or does not meet, the M s :m b and depth screening criteria. Seismic events are also categorized as onshore, offshore, or mixed, based on their 90% location error ellipses and an onshore/offshore grid with five-minute resolution, although this analysis is not used at this time to screen out events.¶Results are presented of applications to almost 42,000 events with m b ?≥?3.5 in the PIDC Standard Event Bulletin (SEB) and to 121 underground nuclear explosions (UNE's) at the U.S. Nevada Test Site (NTS), the Semipalatinsk and Novaya Zemlya test sites in the Former Soviet Union, the Lop Nor test site in China, and the Indian, Pakistan, and French Polynesian test sites. The screening criteria appear to be quite conservative. None of the known UNE's are screened out, while about 41 percent of the presumed earthquakes in the SEB with m b ?≥?3.5 are screened out. UNE's at the Lop Nor, Indian, and Pakistan test sites on 8 June 1996, 11 May 1998, and 28 May 1998, respectively, have among the lowest M s :m b scores of all events in the SEB.¶To assess the validity of the depth screening results, comparisons are presented of SEB depth solutions to those in other bulletins that are presumed to be reliable and independent. Using over 1600 events, the comparisons indicate that the SEB depth confidence intervals are consistent with or shallower than over 99.8 percent of the corresponding depth estimates in the other bulletins. Concluding remarks are provided regarding the performance of the experimental event-screening criteria, and plans for future improvements, based on recent recommendations by the IDC Technical Experts on Event Screening in May 1999.  相似文献   

3.
An attempt has been made to study the behavior of nailed vertical excavations in medium dense to dense cohesionless soil under seismic conditions using a pseudo-dynamic approach. The effect of several parameters such as angle of internal friction of soil(Φ), horizontal(k_h) and vertical(k_v) earthquake acceleration coefficients, amplification factor(f_a), length of nails(L), angle of nail inclination(α) and vertical spacing of nails(S_v) on the stability of nailed vertical excavations has been explored. The limit equilibrium method along with a planar failure surface is used to derive the formulation involved with the pseudo-dynamic approach, considering axial pullout of the installed nails. A comparison of the pseudo-static and pseudo-dynamic approaches has been established in order to explore the effectiveness of the pseudo-dynamic approach over pseudo-static analysis, since most of the seismic stability studies on nailed vertical excavations are based on the latter. The results are expressed in terms of the global factor of safety(FOS). Seismic stability, i.e., the FOS of nailed vertical excavations is found to decrease with increase in the horizontal and vertical earthquake forces. The present values of FOS are compared with those available in the literature.  相似文献   

4.
We investigated ground response for Baku (Azerbaijan) from two earthquakes of magnitude M6.3 occurred in Caspian Sea (characterized as a near event) and M7.5 in Shamakhi (characterized as a remote extreme event). S-wave velocity with the average shear wave velocity over the topmost 30 m of soil is obtained by experimental method from the V P values measured for the soils. The downtown part of Baku city is characterized by low VS30 values (< 250 m/s), related to sand, water-saturated sand, gravel-pebble, and limestone with clay. High surface PGA of 240 gal for the M7.5 event and of about 190 gal for the M6.3 event, and hence a high ground motion amplification, is observed in the shoreline area, through downtown, in the north-west, and in the east parts of Baku city with soft clays, loamy sands, gravel, sediments.  相似文献   

5.
Equations of regression are derived for the intense magnetic storms of 1957?2016. They reflect the nonlinear relation between Dstmin and the effective index of geomagnetic activity Ap(τ) with a timeweighted factor τ. Based on this and on known estimations of the upper limit of the magnetic storm intensity (Dstmin =–2500 nT), the maximal possible value Ap(τ)max ~ 1000 nT is obtained. This makes it possible to obtain initial estimates of the upper limit of variations in some parameters of the thermosphere and ionosphere that are due to geomagnetic activity. It is found, in particular, that the upper limit of an increase in the thermospheric density is seven to eight times larger than for the storm in March 1989, which was the most intense for the entire space era. The maximum possible amplitude of the negative phase of the ionospheric storm in the number density of the F2-layer maximum at midlatitudes is nearly six times higher than for the March 1989 storm. The upper limit of the F2-layer rise in this phase of the ionospheric storm is also considerable. Based on qualitative analysis, it is found that the F2-layer maximum in daytime hours at midlatitudes for these limiting conditions is not pronounced and even may be unresolved in the experiment, i.e., above the F1-layer maximum, the electron number density may smoothly decrease with height up to the upper boundary of the plasmasphere.  相似文献   

6.
We have analyzed the behavior of the F2 layer parameters during nighttime periods of enhanced electron concentration by the results of vertical sounding of the ionosphere carried out with five-minute periodicity in Almaty (76°55′ E, 43°15′ N) in 2001–2012. The results are obtained within the frameworks of the unified concept of different types of ionospheric plasma disturbances manifested as variations in the height and half-thickness of the layer accompanied by an increase and decrease of N m F2 at the moments of maximum compression and expansion of the layer. A good correlation is found between height h Am , which corresponds to the maximum increase, and layer peak height h m F, while h Am is always less than h m F. The difference between h Am and h m F linearly increases with increasing h m F. Whereas the difference is ~38 km for h m F = 280 km, it is ~54 km for h m F = 380 km. Additionally, the correlation is good between the increase in the electron concentration in the layer maximum ΔN m and the maximum enhancement at the fixed height ΔN; the electron concentration enhancement in the layer maximum is about two to three times lower than its maximum enhancement at the fixed height.  相似文献   

7.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

8.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

9.
This paper investigated the effects of basin geometry and material property on the response of 2D trapezoidal sediment-filled basin to incident plane SH waves. Ten basin configurations with different geometries were developed, and then their seismic responses to both Ricker wavelets and seismic records were simulated by using an explicit finite difference scheme. The definition of deep/shallow basin, the precondition for the observation of prominent surface waves and the influential area of edge effects of the shallow basin were discussed quantitatively in this study. The followings were concluded: in the common velocity contrast range (v s1/v s2 < 10), the fundamental frequency a basin with W/H > 3.0 can be estimated approximately by 1D theory. The complexity of peak ground acceleration distribution pattern, the width of the most affected section as well as the amplitude of ground motion in the Edge Region increase with incident frequency. Prominent surface waves can only be observed when the incident wavelength is shorter than the critical wavelength λ c . The interaction between incident wave and basin dynamic property plays a dominant role on the peak ground acceleration amplitude while the interaction between incident wave and geometry plays a more significant role on the peak ground acceleration distribution. For very shallow basin, different areas along the basin width are affected to different extents. Only a limited area close to the basin edge is influenced significantly. It is more feasible to propose spectral aggravation factor for different surface zones respectively than a uniform constant as a tool to calibrate the 1D-based design spectrum so as to take the basin effects into account.  相似文献   

10.
Methods of selecting paleomagnetic data for the construction of apparent polar wander paths (APWPs) are analyzed. It is shown that the existing criteria of reliability of paleomagnetic data cannot be regarded as evidence for their validity. In other words, no unambiguous dependence exists between the reliability and the closeness of paleomagnetic poles to a hypothetical region crossed by the reliable APWP. A new approach to the construction of paleomagnetic APWPs based on simple principles (principle of space and principle of time) is proposed. Using a numerical implementation of this algorithm, three stable clusters were determined (L p = 164, F p = 43; L p = 144, F p = 13; and L p = 170, F p = ?2); the respective maximum estimates of their ages are 248–251, 345, and 385 Ma. These clusters can be regarded as reliable paleomagnetic poles in the Paleozoic of the East European platform.  相似文献   

11.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   

12.
Seismic intensity measures (IMs) perform a pivotal role in probabilistic seismic demand modeling. Many studies investigated appropriate IMs for structures without considering soil liquefaction potential. In particular, optimal IMs for probabilistic seismic demand modeling of bridges in liquefied and laterally spreading ground are not comprehensively studied. In this paper, a coupled-bridge-soil-foundation model is adopted to perform an in-depth investigation of optimal IMs among 26 IMs found in the literature. Uncertainties in structural and geotechnical material properties and geometric parameters of bridges are considered in the model to produce comprehensive scenarios. Metrics such as efficiency, practicality, proficiency, sufficiency and hazard computability are assessed for different demand parameters. Moreover, an information theory based approach is adopted to evaluate the relative sufficiency among the studied IMs. Results indicate the superiority of velocity-related IMs compared to acceleration, displacement and time-related ones. In particular, Housner spectrum intensity (HI), spectral acceleration at 2.0 s (S a-20), peak ground velocity (PGV), cumulative absolute velocity (CAV) and its modified version (CAV 5) are the optimal IMs. Conversely, Arias intensity (I a ) and shaking intensity rate (SIR) which are measures often used in liquefaction evaluation or related structural demand assessment demonstrate very low correlations with the demand parameters. Besides, the geometric parameters do not evidently affect the choice of optimal IMs. In addition, the information theory based sufficiency ranking of IMs shows an identical result to that with the correlation measure based on coefficient of determination (R 2). This means that R 2 can be used to preliminarily assess the relative sufficiency of IMs.  相似文献   

13.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol?1·m?2·s?1) flux data during windy conditions (u* > 0.2 m·s?1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol?1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m?2·s?1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m?2mon?1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as ?43.2±29.6 gC·m?2·mon?1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as ?563.0 and ?441.2 gC·m?2·a?1 respectively, accounting for about 32% of GPP.  相似文献   

14.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

15.
The variability degree of the F 2-layer height, hmF2, from the 1950s–1960s to the 1990s has been analyzed based on the vertical sounding data for a series of midlatitude ionospheric stations. It has been found that the scatter of the hmF2 values (standard deviation) abruptly increases from the earlier decades to the later ones. This increase is more evident in the spring period of the year and is independent of geomagnetic activity. An increase in the scatter of hmF2 apparently indicates systematic changes (trends) in the thermospheric dynamics, the existence of which was suggested in the recent publications of the authors.  相似文献   

16.
A search for trends k(foE) in the critical frequency of the ionospheric E layer at Juliusruh and Slough stations is performed by the method often used by the authors to analyze trends in the F2-layer parameters. It is found that k(foE) could differ in both magnitude and even sign within different time intervals. However, the k(foE) trends have been stably negative over the last two decades for both stations and all months of the year. The k(foE) values averaged over a year are ?0.012 and ?0.005 MHz per year for Juliusruh and Slough stations, respectively. The method used in the recent paper by La?tovi?ka et al. (2016) to determine foE trends is analyzed, and it is shown that the difference in linear approximation of the dependence of the observed foE values on F10.7 within different time intervals could be interpreted not as the presence of a different foE dependence on the F10.7 index within these intervals but as the presence within them of foE trends that change the slope of the linear approximation.  相似文献   

17.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

18.
An experiment on evapotranspiration from citrus trees under irrigation with saline water was carried out for 4 months. Two lysimeters planted with a citrus tree in the green house were used. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. The applied irrigation water was 1.2 times that of the evapotranspiration on the previous day. Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes. The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows. (i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. The evapotranspiration returns to normal after leaching. However it takes months to exhaust the salt from the tree. (ii) To estimate the impact of irrigation with saline water on the evapotranspiration from citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment. Evapotranspiration under irrigation with saline water (ET s ) can be calculated from evapotranspiration under irrigation with freshwater (ET) by the equationET s =K s × ET. Ks can be expressed as a function ofEC sw . (iii) The critical soil-water electrical conductivity (EC sw ) is 9.5 dS/m, beyond which adverse effects on evapotranspiration begin to appear. IfEC sw can be controlled at below 9.5 dS/m, saline water can be safely used for irrigation.  相似文献   

19.
Aftershock sequences of some strong earthquakes of Kamchatka, the Kurile Islands, and Japan are examined. Such source parameters as the length L, along-dip width W, motion on fault D, and stress drop Δσ are determined from the aftershock sequences considered. The values of these parameters were obtained by the formal estimation of linear source parameters (lower bound estimates) and visually (upper bound estimates). The correlation dependences of the obtained parameters on the surface wave (M S ) and seismic moment (M W ) magnitudes are calculated.  相似文献   

20.
This study aimed at the micro-level seismic behavior and zoning of the saline sabkha strata in Jubail industrial area in Eastern Saudi Arabia. It encompasses the evaluation of the site-specific seismic response parameters and the liquefaction potential for various possible subsurface conditions under the probable seismic event(s). The approach to achieve the objectives of this study included the following: analysis of geologic, hydrologic, and geotechnical data of the area; performance of field and laboratory dynamic testing; and dynamic modeling and analysis of the subsurface profiles. The results of the simulation have been used to develop liquefaction potential maps and site-specific spectra of the study area, consisting of ten seismic zones under a range of probable peak horizontal ground acceleration (PHA). Results do not show significant probability of liquefaction of the loose soil layers in the study area at the maximum possible design PHA of 0.035 g; however, liquefaction is anticipated at higher PHA values. Site-specific spectral response resulted in values of S s and S 1 spectral accelerations to be different as compared to those suggested by local standards. The resulting seismic micro-zonation maps and the corresponding parameters are very useful for the stability analysis of the existing and planned structures in the Jubail area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号