首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In unconventional reservoirs, small faults allow the flow of oil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of small earthquakes. These small faults are not generally detected because of the low seismic resolution. However, such small faults are very active and release sufficient energy to initiate a large number of microseismic events (MEs) during hydraulic fracturing. In this study, we identified microfractures (MF) from hydraulic fracturing and natural small faults based on microseismicity characteristics, such as the time–space distribution, source mechanism, magnitude, amplitude, and frequency. First, I identified the mechanism of small faults and MF by reservoir stress analysis and calibrated the ME based on the microseismic magnitude. The dynamic characteristics (frequency and amplitude) of MEs triggered by natural faults and MF were analyzed; moreover, the geometry and activity types of natural fault and MF were grouped according to the source mechanism. Finally, the differences among time–space distribution, magnitude, source mechanism, amplitude, and frequency were used to differentiate natural faults and manmade fractures.  相似文献   

2.
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, timeconsuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.  相似文献   

3.
The paper discusses microseismic monitoring during oil well stimulation by hydraulic fracturing, an emergent technology used for hydraulic fracturing layer control. The passive monitoring is a new widely developing technology of HFL control. The main factor affecting the results of passive seismic monitoring is the event location accuracy. The passive monitoring acquisition system utilizes one three components seismic probe deployed into the observation well. To evaluate the location accuracy of induced events for one observation well we applied traditional kinematic approach based on picking of earthquake P- and S-waves arrivals. The influence of geometric parameters of geophones location in a borehole, their quantity, picking errors of waves arrivals on the accuracy of microearthquakes location is studied.  相似文献   

4.
—?The stress state at the Hijiori hot dry rock site was estimated based on the inversion from focal mechanisms of microseismic events induced during hydraulic injection experiments. The best fit stress model obtained by inverting 58 focal mechanisms of seismic events simultaneously indicates that the maximum principal stress σ1 is vertical, while the minimum principal stress σ3 is horizontal and trends north-south. The average misfit between the stress model and all the data is 6.8°. The inversion results show that the average misfit is small enough to satisfy the assumption of homogeneity in the focal mechanism data and that the 95% confidence regions of σ1 and σ3 are well constrained, i.e., they do not overlap, suggesting that the inversion results are acceptable. The stress estimates obtained by the focal mechanism inversion essentially agree with other stress estimates previously obtained. It is therefore concluded that the focal mechanism inversion method provides a useful tool for estimating the stress state. The hypocentral distributions of microseismic events associated with the hydraulic fracturing experiments are distributed around the plane that spreads to almost east–west from the injection wells and declines to the north at a high angle. The vertical orientation and east–west strike of the seismic events are essentially coplanar with the caldera ring-fault structure in the southern portion of the Hijiori Caldera. This indicates that tensile fractures of intact rock were not being created, but pre-existing fractures were being re-opened and developed in the direction of the maximum horizontal principal stress, although microseismic events were caused by shear failures.  相似文献   

5.
在油田水力压裂微地震事件定位结果的基础上,结合有效微地震事件的时空分布、震级大小、地震矩、震源半径、应力降和b值等地震学参数进行综合研究,并结合研究区域的地质背景和测井资料对水力压裂诱发的裂缝网络进行几何形态分析和应力解释.本文提出的微地震综合分析解释方法可对压裂后储层物性进行综合评价,有利于对储层改造效果进行预测,对油田的水力压裂施工具有指导意义.  相似文献   

6.
The Soufriere of St. Vincent has been monitored for more than 25 years as part of a regional programme in the Lesser Antilles. In that time the volcano has erupted twice but our studies have shown no discernible change in regional seismicity before either event. However, very small seismic events were observed in the crater during the 1971–1972 eruption and were detected before the start of the 1979 explosive eruption; we believe that they were generated by thermally induced hydraulic fracturing within the lava mass inside the crater lake. We conclude that seismographic monitoring of Lesser Antillean volcanoes can give ambiguous results but that at least one instrument must be placed within 1 km of the vent if the earliest signs of activity are to be detected.  相似文献   

7.
We examine the problem of localization of a single microseismic event and determination of its seismic moment tensor in the presence of strongly correlated noise. This is a typical problem occurring in monitoring of microseismic events from a daylight surface during producing or surface monitoring of hydraulic fracturing. We propose a solution to this problem based on the method of maximum likelihood. We discuss mathematical aspects of the problem, some features and weak points of the proposed approach, estimate the required computing resources, and present the results of numerical experiments. We show that the proposed approach is much more resistant to correlated noises than diffraction stacking methods and time reverse modeling.  相似文献   

8.
Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not produced clearly recognized volcanic tremor. Instead, a variety of atypical microearthquakes have been recorded during these episodes, including events dominated by low-frequency (long-period) or mixed high and low-frequency (hybrid) signals. During a 1997 episode, a number of unusual microearthquakes occurred within a temporary 40-station seismic network surrounding the Casa Diablo area, allowing the events to be precisely located and analyzed as a function of azimuth, offset, and source characteristics. Eight prime examples lie within two, 7 km-deep clusters of seismicity separated by about 1 km, with four events in each cluster. Empirical Green's function deconvolution shows that these events are composed of two to three sub-events, the sub-events consisting of ordinary (single rupture, double-couple) microearthquakes. The delay times between the sub-events are constant within each cluster, equaling 0.092 s in one and 0.06 s in the other. Events from other clusters show similar delays. The signal interference produced by the closely spaced sub-events gives rise to modulated, delay-dependent source spectra. The regularity of the delays suggests that the sub-events are being triggered by a fixed length and/or time scale process, an example being the length/inflation rate of a magmatic or hydrothermal flow structure. With continued action of the triggering process, the sub-events could proliferate and evolve into observable volcanic tremors at Mammoth.  相似文献   

9.
Abstract. A simple, fast, moment-tensor inversion method using bandpass-filtered P-amplitudes was used to study the moment-tensor statistics of Long Valley caldera microearthquakes. The events were recorded in the summer of 1997, during a swarm in the caldera. The swarm was associated with geodetic extension, uplift, and subsequent moderate earthquake activity. The moment tensor solutions for 1,993 events were calculated using the new method. The majority of the resulting focal mechanisms appear to be explained in terms of double couple mechanisms. Since some events did exhibit considerable deviation from double-couples, the moment data were studied for their statistical significance. The moments of the actual data were compared to the moments of synthetic data with varying degrees of random noise in their spectra. The results of this study suggested that unless data from more than 20 stations are used and the earthquake epicenter is located inside or very close to the network area, moment-tensor inversion does not correctly resolve the non-double-couple components of microearthquakes. Analysis of the inversion residuals shows that the average noise in the P-wave spectra was close to 20%. The fluctuations of the volumetric components of the moment-tensor are in good agreement with those of the synthetic pure double-couples with 20% of added noise. Thus the moment-tensor statistics suggests that little if any volume change is required to explain the observed seismic energy release in the swarm. However, the statistics do show that a significant compensated-linear-vector-dipole component maybe present in the bulk of the seismicity. Given the network used in this study, such a component could not be precisely resolved for individual earthquakes. This possibility deserves further investigation because of its bearing on the nature of fluid-fault-earthquake processes in swarms.  相似文献   

10.
基于方位地震数据的地应力反演方法   总被引:1,自引:0,他引:1       下载免费PDF全文
在页岩油气藏的开发和勘探阶段,需要对储层进行水力压裂改造,形成有利于油气聚集和运移的裂缝.地应力是进行水力压裂改造的重要参数,能够决定裂缝的大小、方向以及分布形态,影响着压裂的增产效果,且最大和最小水平应力差异比(ODHSR,Orthorhombic Differential Horizontal Stress Ratio)是评价储层是否可压裂成网的重要因子.本文探讨了基于地震数据估算地应力的方法,以指导页岩气的水力压裂开发.首先,利用叠前方位地震数据反演得到地层的弹性参数和各向异性参数;其次,基于正交各向异性水平应力差异比近似公式,利用反演得到的弹性参数和各向异性参数估算地层的ODHSR;最后,选取某工区的裂缝型页岩储层的叠前方位地震数据对该方法进行实际应用.实际工区地震数据应用表明,基于叠前方位地震数据反演得到的ODHSR能够有效的识别储层中易于压裂成网的区域.  相似文献   

11.
Tight oil siltstones are rocks with complex structure at pore scale and are characterized by low porosity and low permeability at macroscale. The production of tight oil siltstone reservoirs can be increased by hydraulic fracturing. For optimal fracking results, it is desirable to map the ability to fracture based on seismic data prior to fracturing. Brittleness is currently thought to be a key parameter for evaluating the ability to fracture. To link seismic information to the brittleness distribution, a rock physics model is required. Currently, there exists no commonly accepted rock physics model for tight oil siltstones. Based on the observed correlation between porosity and mineral composition and known microstructure of tight oil siltstone in Daqing oilfield of Songliao basin, we develop a rock physics model by combining the Voigt–Reuss–Hill average, self-consistent approximation and differential effective medium theory. This rock physics model allows us to explore the dependence of the brittleness on porosity, mineral composition, microcrack volume fraction and microcrack aspect ratio. The results show that, as quartz content increases and feldspar content decreases, Young's modulus tends to increase and Poisson ratio decreases. This is taken as a signature of higher brittleness. Using well log data and seismic inversion results, we demonstrate the versatility of the rock physics template for brittleness prediction.  相似文献   

12.
水力压裂对速度场及微地震定位的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
水力压裂是页岩气开发过程中的核心增产技术,微地震则广泛用于压裂分析、水驱前缘监测和储层描述.微地震反演过程中,用于反演的速度模型往往基于测井、地震或标定炮资料构建,忽略了压裂过程中裂缝及孔隙流体压力变化对地层速度的影响.本文首先基于物质守恒、渗流理论和断裂力学模拟三维水力压裂过程,得到地下裂缝发育特征和孔隙压力分布.继而根据Coates-Schoenberg方法和裂缝柔量参数计算裂缝和孔隙压力对速度场的影响,得到压裂过程中的实时速度模型.最后利用三维射线追踪方法正演微地震走时和方位信息,并采用常规微地震定位方法反演震源位置及进行误差分析.数值模拟结果表明,检波器空间分布影响定位精度,常规方法的定位误差随射线路径在压裂带中传播距离增加而变大,且不同压裂阶段的多点反演法与单点极化法精度相当.  相似文献   

13.
We present results of processed microseismic events induced by hydraulic fracturing and detected using dual downhole monitoring arrays. The results provide valuable insight into hydraulic fracturing. For our study, we detected and located microseismic events and determined their magnitudes, source mechanisms and inverted stress field orientation. Event locations formed a distinct linear trend above the stimulated intervals. Source mechanisms were only computed for high‐quality events detected on a sufficient number of receivers. All the detected source mechanisms were dip‐slip mechanisms with steep and nearly horizontal nodal planes. The source mechanisms represented shear events and the non‐double‐couple components were very small. Such small, non‐double‐couple components are consistent with a noise level in the data and velocity model uncertainties. Strikes of inverted mechanisms corresponding to the nearly vertical fault plane are (within the error of measurements) identical with the strike of the location trend. Ambient principal stress directions were inverted from the source mechanisms. The least principal stress, σ3, was determined perpendicular to the strike of the trend of the locations, indicating that the hydraulic fracture propagated in the direction of maximum horizontal stress. Our analysis indicated that the source mechanisms observed using downhole instruments are consistent with the source mechanisms observed in microseismic monitoring arrays in other locations. Furthermore, the orientation of the inverted principal components of the ambient stress field is in agreement with the orientation of the known regional stress, implying that microseismic events induced by hydraulic fracturing are controlled by the regional stress field.  相似文献   

14.
Seismic activity, ground deformation, and soil and fumarole temperatures acquired during 2004–2007 at Vulcano (Aeolian Islands) are analysed and the time relations among the different time series are discussed. Changes in temperature of fumarolic gases took place during four “anomalous” periods (November 2004–March 2005; October 2005–February 2006; August–October 2006; July–December 2007) at the same time as an increasing number of volcano-seismic events. In particular, the temperatures at high temperature vents and at steam heated soil ranged in time from 180 to 440°C and from 20 to 90°C, respectively. The maximum daily number of volcano-seismic events was 57, reached during the second anomalous period. This seismicity, characterised by focal depth generally lower than 1?km below sea level (b.s.l.) and composed of different kinds of events associated to both resonance and shear failure processes, is related to the shallow dynamics of the hydrothermal system. During the analysed period, very few volcano-tectonic earthquakes took place and tilt recordings showed no sharp or important changes. In light of such observations, the increases in both temperature and volcano-seismic events number were associated to increases in the release of gas from a deep and stable magma body, without magma intrusions within the shallow hydrothermal system. Indeed, a greater release of gas from depth leads to increased fluid circulation, that can promote increases in volcano-seismic events number by both fracturing processes and resonance and vibration in cracks and conduits. The different trends observed in the measured geochemical and geophysical series during the anomalous periods can be due to either time changes in the medium permeability or a changing speed of gas release from a deep magma body. Finally, all the observed variations, together with the changing temporal distribution of the different seismic event kinds, suggest that the hydrothermal system at Vulcano can be considered unsteady and dynamic.  相似文献   

15.
The paper is devoted to such a priority direction of digital seismology as the detection of seismic signals in a noisy medium. Various formulations of the problem of seismic event detection are analyzed. The reasons for the ineffectiveness of the classical formulation of the detection problem are revealed, and an adequate general formulation of the problem in the frequency-time space is proposed. A criterion for the automatic determination of the length of a seismic signal is proposed. The time-scale STA/LTA (Short Time Average to Long Time Average) detector, utilizing the expansion of a seismogram in a packet of wavelets, is proposed. The method eliminates the shortcomings of the standard scheme and enables the detection of seismic events with a low signal-to-noise ratio. The problems of the choice of the mother wavelet and the decomposition level of seismograms are discussed from the standpoint of physical properties of seismic wave fields.  相似文献   

16.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

17.
During seismic monitoring of hydraulic fracturing treatment, it is very common to ignore the deviations of the monitoring or treatment wells from their assumed positions. For example, a well is assumed to be perfectly vertical, but in fact, it deviates from verticality. This can lead to significant errors in the observed azimuth and other parameters of the monitored fracture‐system geometry derived from microseismic event locations. For common hydraulic fracturing geometries, a 2° deviation uncertainty on the positions of the monitoring or treatment well survey can cause a more than 20° uncertainty of the inverted fracture azimuths. Furthermore, if the positions of both the injection point and the receiver array are not known accurately and the velocity model is adjusted to locate perforations on the assumed positions, several‐millisecond discrepancies between measured and modeled SH‐P traveltime differences may appear along the receiver array. These traveltime discrepancies may then be misinterpreted as an effect of anisotropy, and the use of such anisotropic model may lead to the mislocation of the detected fracture system. The uncertainty of the relative positions between the monitoring and treatment wells can have a cumulative, nonlinear effect on inverted fracture parameters. We show that incorporation of borehole deviation surveys allows reasonably accurate positioning of the microseismic events. In this study, we concentrate on the effects of horizontal uncertainties of receiver and perforation positions. Understanding them is sufficient for treatment of vertical wells, and also necessary for horizontal wells.  相似文献   

18.
Between 1994 and 2010, we completed 16 thermal surveys of Vulcano’s Fossa fumarole field (Aeolian Islands, Italy). In each survey, between 400 and 1,200 vent temperatures were collected using a thermal infrared thermometer from distances of ~1?m. The results show a general decrease in average vent temperature during 1994–2003, with the average for the entire field falling from ~220°C in 1994 to ~150°C by 2003. However, between 2004 and 2010, we witnessed heating, with the average increasing to ~190°C by 2010. Alongside these annual-scale field-wide trends, we record a spatial re-organisation of the fumarole field, characterised by shut down of vent zones towards the crater floor, matched by rejuvenation of zones located towards the crater rim. Heating may be expected to be associated with deflation because increased amounts of vaporisation will remove volume from the hydrothermal system Gambino and Guglielmino (J Geophys Res 113:B07402, 2008). However, over the 2004–2010 heating period, no ground deformation was observed. Instead, the number of seismic events increased from a typical rate of 37 events per month during 1994–2000 to 195 events per month during 2004–2010. As part of this increase, we noticed a much greater number of high-frequency events associated with rock fracturing. We thus suggest that the heating event of 2004–2010 was the result of changed permeability conditions, rather than change in the heat supply from the deeper magmatic source. Within this scenario, cooling causes shut down of lower sectors and re-establishment of pathways located towards the crater rim, causing fracturing, increased seismicity and heat flow in these regions. This is consistent with the zone of rejuvenation (which lies towards and at the rim) being the most favourable location for fracturing given the stress field of the Fossa cone Sch?pa et al. (J Volcanol Geotherm Res 203:133–145, 2011); it is also the most established zone, having been active at least since the early twentieth century. Our data show the value of deploying multi-disciplinary geophysical campaigns at degassing (fumarolic) hydrothermal systems. This allows more complete and constrained understanding of the true heat loss dynamics of the system. In the case study presented here, it allows us to distinguish true heating from apparent heating phases. While the former are triggered from the bottom-up, i.e. they are driven by increases in heat supply from the magmatic source, the latter are triggered from the top-down, i.e. by changing permeability conditions in the uppermost portion of the system to allow more efficient heat flow over zones predisposed to fracturing.  相似文献   

19.
Prediction of magnitude of the largest potentially induced seismic event   总被引:1,自引:0,他引:1  
We propose a method for determining the possible magnitude of a potentially largest induced seismic event derived from the Gutenberg–Richter law and an estimate of total released seismic moment. We emphasize that the presented relationship is valid for induced (not triggered) seismicity, as the total seismic moment of triggered seismicity is not bound by the injection. The ratio of the moment released by the largest event and weaker events is determined by the constants a and b of the Gutenberg–Richter law. We show that for a total released seismic moment, it is possible to estimate number of events greater than a given magnitude. We determine the formula for the moment magnitude of a probable largest seismic event with one occurrence within the recurrence interval (given by one volumetric change caused by mining or injecting). Finally, we compare theoretical and measured values of the moment magnitudes of the largest induced seismic events for selected geothermal and hydraulic fracturing projects.  相似文献   

20.
Like most other industrial activities that affect the subsurface, hydraulic fracturing carries the risk of reactivating pre‐existing faults and thereby causing induced seismicity. In some regions, regulators have responded to this risk by imposing traffic light scheme‐type regulations, where fracture stimulation programs must be amended or shut down if events larger than a given magnitude are induced. Some sites may be monitored with downhole arrays and/or dense near‐surface arrays, capable of detecting very small microseismic events. However, such monitoring arrangements will not be logistically or economically feasible at all sites. Instead, operators are using small, sparse arrays of surface seismometers to meet their monitoring obligations. The challenge we address in this paper is to maximise the detection thresholds of such small, sparse, surface arrays so that they are capable of robustly identifying small‐magnitude events whose signal‐to‐noise ratios may be close to 1. To do this, we develop a beamforming‐and‐stacking approach, computing running short‐term/long‐term average functions for each component of each recorded trace (P, SH, and SV), time‐shifting these functions by the expected travel times for a given location, and performing a stack. We assess the effectiveness of this approach with a case study using data from a small surface array that recorded a multi‐well, multi‐stage hydraulic fracture stimulation in Oklahoma over a period of 8 days. As a comparison, we initially used a conventional event‐detection algorithm to identify events, finding a total of 17 events. In contrast, the beamforming‐and‐stacking approach identified a total of 155 events during this period (including the 17 events detected by the conventional method). The events that were not detected by the conventional algorithm had low‐signal‐to‐noise ratios to the extent that, in some cases, they would be unlikely to be identified even by manual analysis of the seismograms. We conclude that this approach is capable of improving the detection thresholds of small, sparse arrays and thus can be used to maximise the information generated when deployed to monitor industrial sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号