首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimates of carbon emissions from the forest sector in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. The analysis covers both tropical and temperate closed forests. In the mid-1980s, approximately 804,000 ha/year of closed forests suffered major perturbations, of which 668,000 ha was deforestation. Seventy-five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance from land-use change is estimated at 67.0 × 106 tons/year, which lead to net emissions of 52.3 × 106 tons/year accounting for the carbon uptake in restoration plantations and degraded forest lands. This last figure represents approximately 40% of the country's estimated annual total carbon emissions for 1985–1987. The annual carbon balance from the forest sector in 2025 is expected to decline to 28.0 × 106 t in the reference scenario and to become negative (i.e., a carbon sink), 62.0 × 106 t in the policy scenario. A number of policy changes are identified that would help achieve the carbon sequestration potential identified in this last scenario.  相似文献   

2.
Assessment of Major Pools and Fluxes of Carbon in Indian Forests   总被引:3,自引:0,他引:3  
The major pools including phytomass, soil, litter, and fluxes of carbon (C)due to litterfall and landuse changes were estimated for Indian forests. Basedon growing stock-volume approach at the state and district levels, the Indianforest phytomass was estimated in the range of 3.8–4.3 PgC. The totalsoil organic pool in the top 1m depth was estimated as 6.8 PgC, usingestimated soil organic carbon densities and Remote Sensing (RS) based area byforest types. Based on 122 published Indian studies and RS-based forest area,the total litterfall carbon flux was estimated as 208.8 MgCha–1 yr–1.The cumulative net carbon flux (1880–1996) from Indian forests(1880–1996) due to landuse changes (deforestation, afforestation andphytomass degradation) was estimated as 5.4 PgC, using a simple book-keepingapproach. The mean annual net C flux due to landuse changes during1985–1996 was estimated as 9.0 TgC yr–1. For the recentperiod, the Indian forests are nationally a small source with some regionsacting as small sinks of carbon as well. The improved quantification of poolsand fluxes related to forest carbon cycle is important for understanding thecontribution of Indian forests to net carbon emissions as well as theirpotential for carbon sequestration in the context of the Kyoto protocol.  相似文献   

3.
This study reports the first assessment of the compounding effects of land-use change and greenhouse gas warming effects on our understanding of projections of future climate. An AGCM simulation of the potential impacts of tropical deforestation and greenhouse warming on climate, employing a version of NCAR Community Climate Model (CCM1-Oz), is presented. The joint impacts of tropical deforestation and greenhouse warming are assessed by an experiment in which removal of tropical rainforests is imposed into a greenhouse-warmed climate. Results show that the joint climate changes over tropical rainforest regions comprise large reductions in surface evapotranspiration (by about –180 mm yr–1) andprecipitation (by about –312 mm yr–1) over the Amazon Basin, along with anincrease of surface temperature by +3.0 K. Over Southeast Asia, similar but weaker changes are found in this study. Precipitation is decreased by –172 mmyr–1, together with the surface warming of 2.1 K. Over tropical Africa, changes in regional climate is much weaker and with some different features, such as the increase of precipitation by 25 mm yr–1. Energy budgetanalyses demonstrates that the large increase of surface temperature in the joint experiment is not solely produced by the increase of CO2concentration, but is a joint effect of the reduction of surface evaporation (due to deforestation) and the increase of downward atmospheric longwave radiation (due to the doubling of CO2 concentration). Furthermore, impactsof tropical deforestation on the greenhouse-warmed climate are estimated by comparing a pair of tropical deforestation simulations. It is found that in CCM1-Oz, deforestation has very similar impacts on greenhouse-warmed regional climates as on current climates over tropical rainforest regions. The extra-tropical climatic response to tropical deforestation is identified in both sets of tropical deforestation experiments. Statistically significant responses are seen in the large-scale atmospheric circulation such as changes in the velocity potential and vertically integrated kinetic and potential energy fields. Wave propagation patterns are identified in the large-scale circulation anomalies, which provides a mechanism for interpreting the model responses in the extra-tropics. In addition, this study suggests that land-use change such as tropical deforestation may affect projections of future climate.  相似文献   

4.
The aim of this study was to close the carbon budget and reduce uncertainty in annual C balances for Scots pine (Pinus sylvestris) forests in The Netherlands. This was done by comparing estimates of the Net Ecosystem Exchange (NEE) as assessed by two different methods. The inventory based carbon budgeting method estimated the average NEE for 1997 – 2001 at 202 g C m–2 yr–1 (a sink) with a confidence interval of 138 – 271 g C m–2 yr–1. The estimate obtained by the eddy covariance method was 295 g C m–2 yr–1 on average for the same period, with a confidence interval of 224 – 366 g C m–2 yr–1. Uncertainties in the eddy covariance method were mostly related to gap filling of the data. Main uncertainties in the inventory-based method are related to the soil and the root compartment. The difference in NEE as obtained by two independent methods indicates that it is not straightforward to design a sound National System for monitoring and reporting of the total land area and for accounting of changes in forest area under the Kyoto Protocol, and that more effort is required in this field.  相似文献   

5.
Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in live forest biomass modeled from Landsat imagery for the St. Petersburg region was consistent with estimates derived from forest inventory data for the early 1990s (272 and 269 TgC, respectively). The estimates of mean C sink in live forest biomass also agreed well (0.36 and 0.34 Mg C ha–1 yr–1). Virtually all forest lands were accumulating C in live biomass, however when the net change in total ecosystem C stock was considered, 19% of the forest area were a net source of C. The average net C sink in total ecosystem biomass is quite weak (0.08 MgC ha–1 yr–1 and could be reversed by minor increases in harvest rates or a small decline in biomass growth rates.  相似文献   

6.
Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in live forest biomass modeled from Landsat imagery for the St. Petersburg region was consistent with estimates derived from forest inventory data for the early 1990s (272 and 269 TgC, respectively). The estimates of mean C sink in live forest biomass also agreed well (0.36 and 0.34 Mg C ha–1 yr–1). Virtually all forest lands were accumulating C in live biomass, however when the net change in total ecosystem C stock was considered, 19% of the forest area were a net source of C. The average net C sink in total ecosystem biomass is quite weak (0.08 MgC ha–1 yr–1 and could be reversed by minor increases in harvest rates or a small decline in biomass growth rates.  相似文献   

7.
The climatic impact of albedo changes associated with land-surface alterations has been examined. The total surface global albedo change resulting from major land-cover transformations (i.e. deforestation, desertification, irrigation, dam-building, urbanization) has been recalculated, modifying the estimates of Sagan et al., (1979). Tropical deforestation (11.1 million ha yr-1, or 0.6% yr-1, Lanly, 1982) ranks as a major cause of albedo change, although uncertainties in the areal extent of desertification could conceivably render this latter process of similar significance. The maximum total global albedo change over the last 30 yr for the various processes lies between 0.000 33 and 0.000 64, corresponding to a global temperature decrease of between 0.06 K and 0.09 K (scaled from the 1-D radiative convective model of Hansen et al., 1981), which falls well below the interannual and longer period variability.An upper bound to the impact of tropical deforestation was obtained by concentrating all vegetation change into a single region. The magnitude of this modification is equivalent to 35–50 yr of global deforestation at the current rate, but centered on the Brazilian Amazon. The climatic consequences of such tropical deforestation were simulated, using the GISS GCM (Hansen et al., 1983). In the simulation, a total area of 4.94 × 106 km2 of tropical moist forest was removed and replaced by a grass/crop cover. Although surface albedo increased from 0.11 to 0.19, the effect upon surface temperature was negligible. However, other climate parameters were altered. Rainfall decreased by 0.5–0.7 mm day-1 and both evapotranspiration and total cloud cover were reduced. The absence of a temperature decrease in spite of the increased surface albedo arises because the reduction in evapotranspiration has offset the effects of radiative cooling. The decrease in cloud cover also counteracts the increase in surface albedo. These locally significant changes had no major impact on regional (Hadley or Walker cells) or the global circulation patterns.We conclude that the albedo changes induced by current levels of tropical deforestation appear to have a negligibly small effect on the global climate.  相似文献   

8.
Development trends of Russian forests and their impact on the global carbon budget were assessed at the national level on the basis of long-term forest inventory data (1961–1998). Over this period, vegetation of Russian forest lands are estimated as a carbon sink, with an annual average level of carbon sequestration in vegetational organic matter of 210 ± 30 Tg C · yr–1 (soil carbon is not considered in this study), of which 153 Tg C · yr–1 were accumulated in live biomass and 57 Tg C · yr–1 in dead wood. The temporal variability of the sink is very large; for the five-year averages used in the analysis, the C sequestration varies from about 60 to above 300 Tg C· yr–1. It is shown that long-term forest inventory data could serve as an important information base for assessing crucial indicators of full carbon accounting of forests.  相似文献   

9.
Integrated estimates of global terrestrial carbon sequestration   总被引:1,自引:0,他引:1  
Assessing the contribution of terrestrial carbon sequestration to climate change mitigation requires integration across scientific and disciplinary boundaries. A comprehensive analysis incorporating ecologic, geographic and economic data was used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric greenhouse gas stabilization by 2100. Terrestrial sequestration reaches a peak rate of 0.5–0.7 GtC yr−1 in mid-century with contributions from agricultural soils (0.21 GtC yr−1), reforestation (0.31 GtC yr−1) and pasture (0.15 GtC yr−1). Sequestration rates vary over time and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 23 to 41 GtC.  相似文献   

10.
A global data set on the geographic distribution and seasonality of freshwater wetlands and rice paddies has been compiled, comprising information at a spatial resolution of 2.5° by latitude and 5° by longitude. Global coverage of these wetlands total 5.7×106 km2 and 1.3×106 km2, respectively. Natural wetlands have been grouped into six categories following common terminology, i.e. bog, fen, swamp, marsh, floodplain, and shallow lake. Net primary productivity (NPP) of natural wetlands is estimated to be in the range of 4–9×1015 g dry matter per year. Rice paddies have an NPP of about 1.4×1015 g y–1. Extrapolation of measured CH4 emissions in individual ecosystems lead to global methane emission estimates of 40–160 Teragram (1 Tg=1012 g) from natural wetlands and 60–140 Tg from rice paddies per year. The mean emission of 170–200 Tg may come in about equal proportions from natural wetlands and paddies. Major source regions are located in the subtropics between 20 and 30° N, the tropics between 0 and 10° S, and the temperate-boreal region between 50 and 70° N. Emissions are highly seasonal, maximizing during summer in both hemispheres. The wide range of possible CH4 emissions shows the large uncertainties associated with the extrapolation of measured flux rates to global scale. More investigations into ecophysiological principals of methane emissions is warranted to arrive at better source estimates.  相似文献   

11.
Potential Soil C Sequestration on U.S. Agricultural Soils   总被引:1,自引:0,他引:1  
Soil carbon sequestration has been suggested as a means to help mitigate atmospheric CO2 increases, however there is limited knowledge aboutthe magnitude of the mitigation potential. Field studies across the U.S. provide information on soil C stock changes that result from changes in agricultural management. However, data from such studies are not readily extrapolated to changes at a national scale because soils, climate, and management regimes vary locally and regionally. We used a modified version of the Intergovernmental Panel on Climate Change (IPCC) soil organic C inventory method, together with the National Resources Inventory (NRI) and other data, to estimate agricultural soil C sequestration potential in the conterminous U.S. The IPCC method estimates soil C stock changes associated with changes in land use and/or land management practices. In the U.S., the NRI provides a detailed record of land use and management activities on agricultural land that can be used to implement the IPCC method. We analyzed potential soil C storage from increased adoption of no-till, decreased fallow operations, conversion of highly erodible land to grassland, and increased use of cover crops in annual cropping systems. The results represent potentials that do not explicitly consider the economic feasibility of proposed agricultural production changes, but provide an indication of the biophysical potential of soil C sequestration as a guide to policy makers. Our analysis suggests that U.S. cropland soils have the potential to increase sequestered soil C by an additional 60–70 Tg (1012g) C yr– 1, over present rates of 17 Tg C yr–1(estimated using the IPCC method), with widespread adoption of soil C sequestering management practices. Adoption of no-till on all currently annually cropped area (129Mha) would increase soil C sequestration by 47 Tg C yr–1. Alternatively, use of no-till on 50% of annual cropland, with reduced tillage practices on the other 50%, would sequester less – about37 Tg C yr–1. Elimination of summer fallow practices and conversionof highly erodible cropland to perennial grass cover could sequester around 20 and 28Tg C yr–1, respectively. The soil C sequestration potentialfrom including a winter cover crop on annual cropping systems was estimated at 40Tg C yr–1. All rates were estimated for a fifteen-yearprojection period, and annual rates of soil C accumulations would be expected to decrease substantially over longer time periods. The total sequestration potential we have estimated for the projection period (83 Tg C yr–1) represents about 5% of 1999total U.S. CO2 emissions or nearly double estimated CO2 emissionsfrom agricultural production (43 Tg C yr–1). For purposes ofstabilizing or reducing CO2 emissions, e.g., by 7% of 1990 levels asoriginally called for in the Kyoto Protocol, total potential soil C sequestration would represent 15% of that reduction level from projected 2008 emissions(2008 total greenhouse gas emissions less 93% of 1990 greenhouse gasemissions). Thus, our analysis suggests that agricultural soil C sequestration could play a meaningful, but not predominant, role in helping mitigate greenhouse gas increases.  相似文献   

12.
Biomass burning has important impacts on atmospheric chemistry and climate. Fires in tropical forests and savannas release large quantities of trace gases and particulate matter. Combustion of biofuels for cooking and heating constitutes a less spectacular but similarly widespread biomass burning activity. To provide the groundwork for a quantification of this source, we determined in rural Zimbabwe the emissions of CO2, CO, and NO from more than 100 domestic fires fueled by wood, agricultural residues, and dung. The results indicate that, compared to open savanna fires, emissions from domestic fires are shifted towards products of incomplete combustion. A tentative global analysis shows that the source strength of domestic biomass burning is on the order of 1500 Tg CO2–C yr–1, 140 Tg CO–C yr–1, and 2.5 Tg NO–N yr–1. This represents contributions of about 7 to 20% to the global budget of these gases.  相似文献   

13.
In order to estimate the production of charcoal and the atmospheric emissions of trace gases volatilized by burning we have estimated the global amounts of biomass which are affected by fires. We have roughly calculated annual gross burning rates ranging between about 5 Pg and 9 Pg (1 Pg = 1015 g) of dry matter (2–4 Pg C). In comparison, about 9–17 Pg of above-ground dry matter (4–8 Pg C) is exposed to fires, indicating a worldwide average burning efficiency of about 50%. The production of dead below-ground dry matter varies between 6–9 Pg per year. We have tentatively indicated the possibility of a large production of elemental carbon (0.5–1.7 Pg C/yr) due to the incomplete combustion of biomass to charcoal. This provides a sink for atmospheric CO2, which would have been particularly important during the past centuries. From meager statistical information and often ill-documented statements in the literature, it is extremely difficult to calculate the net carbon release rates to the atmosphere from the biomass changes which take place, especially in the tropics. All together, we calculate an overall effect lof the biosphere on the atmospheric carbon dioxide budget which may range between the possibilities of a net uptake or a net release of about 2 Pg C/yr. The release of CO2 to the atmosphere by deforestation projects may well be balanced by reforestation and by the production of charcoal. Better information is needed, however, to make these estimates more reliable.Now at the Max-Planck-Institute for Chemistry, Mainz, FRG.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2–Eq yr–1 in1990 to 52 Tg CO2–Eq yr–1 in 2008. Adoption of thesink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2–Eq yr–1 (L), 42 TgCO2–Eq yr–1 (M) or 36 Tg CO2–Eq yr–1 (H). Among thesink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation andmanure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992).  相似文献   

15.
The biomass carbon (C) stock of forests is one of key parameters for the study of regional and global carbon cycles. Literature reviews shows that inventory-based forest C stocks documented for major countries in the middle and high northern latitudes fall within a narrow range of 36–56 Mg C ha−1 with an overall area-weighted mean of 43.6 Mg C ha−1. These estimates are 0.40 to 0.71 times smaller than those (61–108 Mg C ha−1) used in previous analysis of balancing the global carbon budget. A statistical analysis, using the global forest biomass database, implies that aboveground biomass per hectare is proportional to forest mean height [biomass in Mg/ha = 10.63 (height in m)] in closed-canopy forests in the study regions, indicating that forest height can be a proxy of regional biomass C stocks. The narrow range of C stocks is likely a result of similar forest height across the northern regions. The lower biomass C stock obtained in this study strongly suggests that the role of the northern forests in the global carbon cycle needs to be re-evaluated. Our findings also suggest that regional estimates of biomass could be readily made from the use of satellite methods such as lidar that can measure forest canopy height over large regions.  相似文献   

16.
This paper presents a new accounting mechanism in the context of the UNFCCC issue on reducing emissions from deforestation in developing countries, including technical options for determining baselines of forest conversions. This proposal builds on the recent scientific achievements related to the estimation of tropical deforestation rates and to the assessment of ‘intact’ forest areas. The distinction between ‘intact’ and ‘non intact’ forests used here arises from experience with satellite-based deforestation measurements and allows accounting for carbon losses from forest degradation. The proposed accounting system would use forest area conversion rates as input data. An optimal technical solution to set baselines would be to use historical average figures during the time period from 1990 to 2005. The system introduces two different schemes to account for preserved carbon: one for countries with high forest conversion rates where the desired outcome would be a reduction in their rates, and another for countries with low rates. A ‘global’ baseline rate would be used to discriminate between these two country categories (high and low rates). For the hypothetical accounting period 2013–2017 and considering 72% of the total tropical forest domain for which data are available, the scenario of a 10% reduction of the high rates and of the preservation of low rates would result in approximately 1.6 billion tCO2 of avoided emissions. The resulting benefits of this reduction would be shared between those high-rate countries which reduced deforestation and those low-rate countries which did not increase their deforestation over an agreed threshold (e.g., half of “global” baseline rate).  相似文献   

17.
Because of its large area of high C density forests and high deforestation rate, Brazil may play an important role in the global C cycle. The study reported here developed an estimate of Brazil's biotic CO2-C budget for the period 1990–2010. The analysis used a spreadsheet C accounting model based on three major components: a conceptual model of ecosystem C cycling, a recently completed vegetation classification developed from remote-sensing data, and published estimates of C density for each of the vegetation classes. The dynamics of the model came from estimates of disturbance to ecosystems that release C and estimates of recovery from past disturbance that store C. The model was projected into the future with three alternative estimates of the rate of future land use change. Under all three deforestation scenarios Brazil was a C source in the range of about 3–5 × 109 MgC over the 20-yr study period.The research described in this article has been funded wholly by the U.S. Environmental Protection Agency. This document has been prepared at the EPA National Health and Environmental Effects Research Laboratory in Corvallis, OR, U.S.A., through contract number 68-C8-0006 to ManTech Environmental Research Services, Corp. It has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

18.
Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×109 t of biomasscarbon of these types is exposed to burning annually,of which 1.1×109 t is emitted to the atmospherethrough combustion and 49×106 t is converted tocharcoal (including 26–31×106 t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×109 t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×109 t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×109 t C year-1 resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×109 t ofCO2-equivalent carbon under a low trace gasscenario and 3.83×109 t under a high trace gasscenario. Of these totals, 1.06×109 t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×109 t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×109 t C, equivalent to 2.0–2.4×109 t of CO2-equivalent carbon. Adding emissions of0.4×109 t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×109 t C, equivalent to 2.4–2.9×109 t of CO2-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×109 t C year-1)calculated for the 1981–1990 period is 50% higherthan the 1.6×109 t C year-1 value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change.  相似文献   

19.
The dynamics of terrestrial ecosystems depends on interactions between carbon, nutrient and hydrological cycles. Terrestrial ecosystems retain carbon in live biomass (aboveground and belowground), decomposing organic matter, and soil. Carbon is exchanged naturally between these systems and the atmosphere through photosynthesis, respiration, decomposition, and combustion. Human activities change carbon stock in these pools and exchanges between them and the atmosphere through land-use, land-use change, and forestry.In the present study we estimated the wood (stem) biomass, growing stock (GS) and carbon stock of Indian forests for 1984 and 1994. The forest area, wood biomass, GS, and carbon stock were 63.86 Mha, 4327.99 Mm3, 2398.19 Mt and 1085.06 Mt respectively in 1984 and with the reduction in forest area, 63.34 Mha, in 1994, wood biomass (2395.12 Mt) and carbon stock (1083.69 Mt) also reduced subsequently. The Conifers, of temperate region, stocked maximum carbon in their woods, 28.88 to 65.21 t C ha−1, followed by Mangrove forests, 28.24 t C ha−1, Dipterocarp forests, 28.00 t C ha−1, and Shorea robusta forests, 24.07 t C ha−1. Boswellia serrata, with 0.22 Mha forest area, stocked only 3.91 t C ha−1. To have an idea of rate of carbon loss the negative changes (loss of forest area) in forest area occurred during 1984–1994 (10yrs) and 1991–1994 (4yrs) were also estimated. In India, land-use changes and fuelwood requirements are the main cause of negative change. Total 24.75 Mt C was lost during 1984–1994 and 21.35 Mt C during 1991–94 at a rate of 2.48 Mt C yr−1 and 5.35 Mt C yr−1 respectively. While in other parts of India negative change is due to multiple reasons like fuelwood, extraction of non-wood forest products (NWFPs), illicit felling etc., but in the northeastern region of the country shifting cultivation is the only reason for deforestation. Decrease in forest area due to shifting cultivation accounts for 23.0% of the total deforestation in India, with an annual loss of 0.93 Mt C yr−1.  相似文献   

20.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号