首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany.  相似文献   

2.
The aim of this study is to analyze the susceptibility conditions to gully erosion phenomena in the Magazzolo River basin and to test a method that allows for driving the factors selection. The study area is one of the largest (225 km2) watershed of southern Sicily and it is mostly characterized by gentle slopes carved into clayey and evaporitic sediments, except for the northern sector where carbonatic rocks give rise to steep slopes. In order to obtain a quantitative evaluation of gully erosion susceptibility, statistical relationships between the spatial distributions of gullies affecting the area and a set of twelve environmental variables were analyzed. Stereoscopic analysis of aerial photographs dated 2000, and field surveys carried out in 2006, allowed us to map about a thousand landforms produced by linear water erosion processes, classifiable as ephemeral and permanent gullies. The linear density of the gullies, computed on each of the factors classes, was assumed as the function expressing the susceptibility level of the latter. A 40-m digital elevation model (DEM) prepared from 1:10,000-scale topographic maps was used to compute the values of nine topographic attributes (primary: slope, aspect, plan curvature, profile curvature, general curvature, tangential curvature; secondary: stream power index; topographic wetness index; LS-USLE factor); from available thematic maps and field checks three other physical attributes (lithology, soil texture, land use) were derived. For each of these variables, a 40-m grid layer was generated, reclassifying the topographic variables according to their standard deviation values. In order to evaluate the controlling role of the selected predictive variables, one-variable susceptibility models, based on the spatial relationships between each single factor and gullies, were produced and submitted to a validation procedure. The latter was carried out by evaluating the predictive performance of models trained on one half of the landform archive and tested on the other. Large differences of accuracy were verified by computing geometric indexes of the validation curves (prediction and success rate curves; ROC curves) drawn for each one-variable model; in particular, soil texture, general curvature and aspect demonstrated a weak or a null influence on the spatial distribution of gullies within the studied area, while, on the contrary, tangential curvature, stream power index and plan curvature showed high predictive skills. Hence, predictive models were produced on a multi-variable basis, by variously combining the one-variable models. The validation of the multi-variables models, which generally indicated quite satisfactory results, were used as a sensitivity analysis tool to evaluate differences in the prediction results produced by changing the set of combined physical attributes. The sensitivity analysis pointed out that by increasing the number of combined environmental variables, an improvement of the susceptibility assessment is produced; this is true with the exception of adding to the multi-variables models a variable, as slope aspect, not correlated to the target variable. The addition of this attribute produces effects on the validation curves that are not distinguishable from noise and, as a consequence, the slope aspect was excluded from the final multi-variables model used to draw the gully erosion susceptibility map of the Magazzolo River basin. In conclusion, the research showed that the validation of one-variable models can be used as a tool for selecting factors to be combined to prepare the best performing multi-variables gully erosion susceptibility model.  相似文献   

3.
土方计算精度与方格网边长之关系的研究   总被引:13,自引:0,他引:13  
通过对方格网法在大比例尺地形图上计算挖(填)土石言精度的讨论,澄清了方格网边长与土石方量计算精度的关系,当土石方量计算精度一定时,对于不同的场平面积、地形图比例尺、地形坡度、施工高度,应采用不同的方格边长,一般情况下,不宜在1:2000或更小比例尺图上进行,方格网边长不宜小于1m。  相似文献   

4.
一种通过地形指数计算流域蓄水容量的方法   总被引:3,自引:0,他引:3       下载免费PDF全文
在概念性分布式水文模型中,单元格蓄水容量的确定成为一个难题。考虑到单元格蓄水容量同地形指数之间的相似性,发现地形指数同蓄水容量间满足位移量为零的对数维布尔分布函数,建立了地形指数同单元格蓄水容量之间的函数关系,从而可通过单元格地形指数求取单元格的蓄水容量,在一定程度上解决了分布式水文模型中产流参数的离散化问题。  相似文献   

5.
Loess Plateau is one of the ecologically fragile regions in China. It is one of the slippery strata of which landslides often developed. The formation and development of landslides are mainly affected by various natural environments, triggering factors, the vulnerability of landslide-bearing bodies, and topography has a controlling effect on landslides and determines landslide distribution. As important environmental elements, the selection and reclassification of topographic factors are the basis for loess landslide vulnerability map. In this study, our research suggests an effective workflow to select and analyze the topographic factors in the loess landslides. Nine hazard-formative environmental factors [e.g., slope, aspect, slope shape (SS), slope of slope (SOS), slope of aspect (SOA), surface amplitude (SA), surface roughness (SR), incision depth (ID) and elevation variation coefficient (EVC)] are prepared for landslide suitability analysis. The models of certainty factor, sensitivity index and correlation coefficient are combined to select and analyze the suitability of these factors. Four topographic factors (i.e., slope, SOS, SS and SR) were ultimately selected to carry out the landslide vulnerability mapping with other factors. Our results showed that most of the landslides were located in medium and high classes and accounting for 75.3%, and these places also coincided with higher economies and intense human activities. Our research also suggested that in situ measurements are necessary to determine how to reclassify these topographic factors and how many grades these topographic factors divided, which would further improve the reliability of landslide vulnerability map for the decision makers to deal with the possible future landslides in terms of safety and human activities.  相似文献   

6.
滑坡的变形破坏行为与内在机理   总被引:2,自引:0,他引:2  
许强 《工程地质学报》2012,20(2):145-151
自20世纪60年代日本学者斋藤借助于蠕变试验成果进行滑坡预测预报以来,人们就一直不停地对斜坡变形破坏行为和滑坡预报方法进行研究和探索,先后提出了数十种滑坡预测预报模型和方法。随着滑坡变形监测实例的不断增多,其变形监测资料越来越丰富,各式各样的变形-时间曲线相继产生。斜坡变形-时间曲线的类型、特征以及形成这些变形-时间曲线的力学条件等诸多问题都是滑坡预警预报必须查明的最基本科学问题。本文通过对各类滑坡变形破坏行为和变形-时间曲线的分析总结,结合岩土体流变试验成果,根据斜坡变形-时间曲线特征,将滑坡分为稳定型、渐变型、突发型3类,并给出了产生这3类变形行为的力学条件。同时,从细观力学的角度分析认为,斜坡产生宏观变形破坏行为的主要原因是岩土体细观尺度颗粒的"流动"和"微破裂",但在不同岩性组成的斜坡和同一斜坡的不同变形阶段,"流动"和"微破裂"将分别发挥不同的作用。  相似文献   

7.
向鹏  纪洪广  邹静  张月征  伍伟斌 《岩土力学》2015,36(4):1211-1216
由于Surpac软件本身功能的限制,基于Surpac块体模型的三维数值建模技术在处理复杂矿山地质形体时存在费时、繁琐等缺陷。通过沿用八叉树层层细分的基本思路,研究了多个地质形体的网格批量自动划分技术,针对现有计算机处理能力在解析精度与模型尺度方面存在的矛盾,借用多重网格法概念探讨了网格局部加密和多尺度划分问题。并应用VC++开发了三维数值网格划分自动化软件平台,使复杂矿山地质形体的计算网格划分更加便捷高效,为开挖力学状态数值分析的自动化提供有力支持。该系统在玲珑金矿原始地应力反演数值建模中得到了实际应用,结果表明,该方法是实际可行和有效的。  相似文献   

8.
岩性及岩体结构对斜坡地震加速度响应的影响   总被引:1,自引:0,他引:1  
刘汉香  许强  侯红娟 《岩土力学》2013,34(9):2482-2488
斜坡岩体的岩性及岩体结构是斜坡在地震作用下产生变形破坏的主要控制因素。基于振动台模型试验,对4个斜坡模型探讨了这2个因素对斜坡地震动力响应的影响。岩性包括强度相对较高的硬岩和强度相对较低的软岩,对这两种岩性的斜坡又分别考虑了不含结构面的均质斜坡和含水平层状结构面的斜坡。基于传感器采集到的大量数据,以主频相近的天然地震波和10 Hz正弦波加载为分析工况,获得了以下几点认识:(1)4个模型斜坡坡面和坡内的水平向加速度均具有高程放大效应,尤其是软岩斜坡坡顶放大效应最显著;(2)软岩斜坡对水平向加速度的高程放大效应强于硬岩斜坡,尤其是在均质斜坡中表现最显著,均质软岩斜坡的高程放大效应呈现出明显的非线性特征;(3)当加载方向与水平层面平行时,含水平层状结构面的斜坡比均质斜坡产生了更强的高程放大效应,且在软岩斜坡中体现最显著;(4)岩性差异对斜坡水平向加速度高程效应的影响比结构差异的影响更为显著。研究结果为岩质斜坡的抗震设计提供了一定参考。  相似文献   

9.
Increasing rainfall intensity and frequency due to extreme climate change and haphazard land development are aggravating soil erosion problems in Korea. A quantitative estimate of the amount of sediment from the catchment is essential for soil and water conservation planning and management. Essential to catchment-scale soil erosion modeling is the ability to represent the fluvial transport system associated with the processes of detachment, transport, and deposition of soil particles due to rainfall and surface flow. This study applied a spatially distributed hydrologic model of rainfall–runoff–sediment yield simulation for flood events due to typhoons and then assessed the impact of topographic and climatic factors on erosion and deposition at a catchment scale. Measured versus predicted values of runoff and sediment discharge were acceptable in terms of applied model performance measures despite underestimation of simulated sediment loads near peak concentrations. Erosion occurred widely throughout the catchment, whereas deposition appeared near the channel network grid cells with a short hillslope flow path distance and gentle slope; the critical values of both topographic factors, providing only deposition, were observed at 3.5 (km) (hillslope flow path distance) and 0.2 (m/m) (local slope), respectively. In addition, spatially heterogeneous rainfall intensity, dependent on Thiessen polygons, led to spatially distinct net-erosion patterns; erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall.  相似文献   

10.
Usually, seismic record stations are established in various topographic slope positions, from valleys to ridges. In most previous studies, topographic amplification factor (TAF) is proposed as one of the indicators of earthquake wave amplification which can lead to overestimation of earthquake magnitudes in seismic networks. This paper uses an indicator called the “Topographic Position Index” for topographic characterization of seismic stations in the Hokuriku region, Japan, and deals with a seismic individuation method through Voronoi tessellation, which is a spatial approach, to propose suitable sites for topographically unbiased or less-biased seismic stations.  相似文献   

11.
Modeling landslide recurrence in Seattle, Washington, USA   总被引:5,自引:0,他引:5  
To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.  相似文献   

12.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

13.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   

14.
In this paper, an improved boundary element approach for 2D elastodynamics in time‐domain is presented. This approach consists in the truncation of time integrations, based on the rapid decrease of the fundamental solutions with time. It is shown that an important reduction of the computation time as well as the storage requirement can be achieved. Moreover, for half‐plane problems, the size of boundary element (BE) meshes and the computation time can be significantly reduced. The proposed approach is used to study the seismic response of slopes subjected to incident SV waves. It is found that large amplifications take place on the upper surface close to the slope, while attenuations are produced on the lower surface. The results also show that surface motions become very complex when the incident wavelength is comparable with the size of the slope or when the slope is steep. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Viewshed analysis is widely used in many terrain applications such as siting problem, path planning problem, and etc. But viewshed computation is very time-consuming, in particular for applications with large-scale terrain data. Parallel computing as a mainstream technique with the tremendous potential has been introduced to enhance the computation performance of viewshed analysis. This paper presents a revised parallel viewshed computation approach based on the existing serial XDraw algorithm in a distributed parallel computing environment. A layered data-dependent model for processing data dependency in the XDraw algorithm is built to explore scheduling strategy so that a fine-granularity scheduling strategy on the process-level and thread-level parallel computing model can be accepted to improve the efficiency of the viewshed computation. And a parallel computing algorithm, XDraw-L, is designed and implemented taken into account this scheduling strategy. The experimental results demonstrate a distinct improvement of computation performance of the XDraw-L algorithm in this paper compared with the coarse-partition algorithm, like XDraw-E which is presented by Song et al. (Earth Sci Inf 10(5):511–523, 2016), and XDraw-B that is the basic algorithm of serial XDraw. Our fine-granularity scheduling algorithm can greatly improve the scheduling performance of the grid cells between the layers within a triangle region.  相似文献   

16.
利用美国ASD公司的FieldSpec Pro FR地面波谱仪,选择5°视场角探头和135cm探头距测试地物高度,开展0°、5°、10°、15°、20°等五种不同地形坡度明、暗地物自然定标场地面波谱测试。通过对比研究不同地形坡度具代表性、能真实反映被测试目标平均自然性的各波谱测试点波谱曲线特征,得出0°、5°地形坡度获取的波谱曲线连续、平滑,信噪比高,没有混入大气水气吸收、仪器噪声等因素导致的剧烈波动、跳跃现象或尖锐锯齿状噪声,波谱特征明显,吸收峰最小值位置清晰可辨,各波谱测试点波谱曲线变化幅度小,整体反射率值变化小,Fe~(2+)、Fe~(3+)、Al-OH、Mg-OH、CO_3~(2-)等分子基团与离子波谱的诊断性波谱特征位置清晰可辨。因此0°和5°坡度地形条件获取的地面同步自然场光谱定标波谱曲线,可以满足航空高光谱遥感数据的大气校正、光谱重建和空、地回归分析等所需的地面波谱数据要求。  相似文献   

17.
On the basis of samples taken from a known topographic surface, the parameters of two types of linear models are estimated. The first category is defined by polynomials or trigonometric functions, whose parameters are simultaneously computed from available data. In the second category a set of local centers is defined, and in the neighborhood of each center a fixed-degree polynomial is developed. An approximative resemblance index is calculated, and contour maps corresponding to various models are compared with the topographic map. It is found that with an increasing number of grid points, maps of local polynomials are converging both in continuity and in resemblance. For a sufficient number of grid points, this resemblance is always higher than those produced by models of the first category.  相似文献   

18.
This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the temporal and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are integrated to assess Newmark-type slope displacements.A new probabilistic approach that incorporates machine learning in metamodeling technique is proposed,by combining relevance vector machine with polynomial chaos expansions(RVM-PCE).Compared with other PCE methods,the proposed RVM-PCE is shown to be more effective in estimating failure probabilities.The sensitivity and relative influence of each random input parameter to the slope displacements are discussed.Finally,the fragility curves for slope displacements are established for sitespecific soil conditions and earthquake hazard levels.The results indicate that the slope displacement is more sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents,and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the proposed approach.  相似文献   

19.
The Rapid Inversion of 3-D Potential Field and Program Design   总被引:1,自引:0,他引:1  
The application of three-dimensional inversion of gravity and magnetic fields is very important not only in geophysical researches, but also in the study of geological structures. A formula of potential field in frequency-domain, developed by Parker in 1973, can be used as a rapid and effective algorithm in gravity and magnetic inversion. The technique has been improved then by Oldenburg, Sprenke, Feng and others.In addition to a brief introduction of Parker's algorithm and its applications, this paper includes the following five parts: basic computational techniques, inversion of single layer, convergence and constraints, simultaneous inversion for density and topography as well as inversion of multilayers. The authors present relevant practical iterative formulas and its varieties when density distribution varies with depth in linear or exponential relation. In order to maintain computation stability and speed up iteration convergence, some approaches are taken in the program design, for instance shifting lower interface of the studied layer, inverting corrections of topography, reducing grid boundary effects and utilizing low-pass filter. With the consideration of the nonuniqueness of the inversion, a method of using seismic data to constrain the range ofpossible models is discussed. It is pointed out that the density variation generates less effects than those of topography on the spectrum of gravity anomaly in second order. Therefore density contrast and topography can be inverted simultaneously by an alternative weighting iteration. By analogy, the inversion of multilayer model can be done in the above procedure. An approach of model decomposition is useful in the computation of multilayer model. The techniques discussed in the present paper for gravitational field are also valid for magnetic field.  相似文献   

20.
Landslides lead to a great threat to human life and property safety. The delineation of landslide-prone areas achieved by landslide susceptibility assessment plays an important role in landslide management strategy. Selecting an appropriate mapping unit is vital for landslide susceptibility assessment. This paper compares the slope unit and grid cell as mapping unit for landslide susceptibility assessment. Grid cells can be easily obtained and their matrix format is convenient for calculation. A slope unit is considered as the watershed defined by ridge lines and valley lines based on hydrological theory and slope units are more associated with the actual geological environment. Using 70% landslide events as the training data and the remaining landslide events for verification, landslide susceptibility maps based on slope units and grid cells were obtained respectively using a modified information value model. ROC curve was utilized to evaluate the landslide susceptibility maps by calculating the training accuracy and predictive accuracy. The training accuracies of the grid cell-based susceptibility assessment result and slope unit-based susceptibility assessment result were 80.9 and 83.2%, and the prediction accuracies were 80.3 and 82.6%, respectively. Therefore, landslide susceptibility mapping based on slope units performed better than grid cell-based method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号