首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined brightness distribution in the plasma tail of comet C/2009 R1 (McNaught) using observations with a small Newtonian reflector (200/1000) on June 9?C12, 2010. Images of the comet were detected using short exposures with a Canon CMOS APS-C camera. The brightness distribution is simulated and the parameters of the cometary plasma tail are obtained within the diffusion model. The magnetic field induction in the cometary tail, lifetime of light particles, and the lengthwise and transverse ion diffusion coefficients are estimated.  相似文献   

2.
SWAN, the all-sky hydrogen Lyman-alpha camera on the SOHO spacecraft, designed primarily to image the interplanetary neutral hydrogen around the Sun, also observes comets continuously over large portions of their apparitions to the north and south of the ecliptic and at small solar elongation angles. Because of SOHO’s location at the L1 Lagrange point, analysis of SWAN images provides excellent temporal coverage of water production. We report here our results of observations of some interesting target comets selected from the extensive SWAN archive. These include three Oort Cloud Comets C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2006 P1 (McNaught) and three apparitions of atypical short-period Comet 96P/Machholz 1. The common aspect of these four comets is their small perihelion distances, which are 0.19, 0.09, 0.17, and 0.12 AU, respectively. Their water production rates over their whole apparitions can be approximated by power laws in heliocentric distance (r in AU) as follows: 1.3 × 1029 r−2.1 s−1 for C/2002 V1 (NEAT), 7.5 × 1028 r−2.0 s−1 for C/2002 X5 (Kudo–Fujikawa), 5.4 × 1029 r−2.4 s−1 for C/2006 (P1 McNaught) and 4.6 × 1027 r−2.1 s−1 for 96P/Machholz 1. We also present daily-average water production rates for the long-period comets over long continuous time periods. We examine these results in light of our growing survey of comets that is yielding some interesting comparisons of water production rate variations with heliocentric distance and taxonomic classes.  相似文献   

3.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

4.
Orbits are calculated for Comet C/1845 L1 (the Great June Comet) and C/1846 D1 (de Vico), the former based on 157 observations in right ascension and 152 in declination and the latter on 10 and 9, respectively. Both orbits are hyperbolic and statistically distinguishable from parabolas. Statistical tests indicate that the residuals are random and thus the orbits satisfactory. The Great June Comet is in no way associated with the comet Tycho Brahe observed in 1596 (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Investigations on OH maser lines in comets have been performed with the RT-22 at CrAO. The results of observations of 9P/Temper1 and Lulin C/2007 N3 comets in the OH molecule line at a wavelength of 18 cm are presented. An original technique for observation data analysis has been developed. The gas production rate of OH molecules in these comets is estimated.  相似文献   

6.
Comet C/1999 S4 (LINEAR) showed a very special behaviour between 28 June and1 July 2000. Optical observations of the dust coma in two distinct continuum bandsrevealed that it changed morphologically as well as in colour. The two-dimensionalcoma morphology indicates a splitting of the nucleus which probably occurred shortlybefore the observations of 28 June 2000. The distribution of the dust particles in sunand tail direction reflected by the slopes of the radial profiles indicate the presence ofa considerable amount of disintegrating dust particles in the sunward hemisphere andan overabundance of dust, reflecting at 440 nm, within the first 18,000 km of the dusttail. The spatial profiles of the (BC–RC) colour index in sun direction are distinctly different on 28 June and 1 July, indicating the production of a large amount of particles observable in blue continuum after 28 June.  相似文献   

7.
To explain the distinct transversal striae observed in the tail of comet C/2006 P1 (McNaught) near the perihelion, a dynamic model for the formation of the dust tail of the comet has been developed. It is supposed that, on the surface of the nucleus, there are three local active domains of the increased outflow of the material. Formation of the striated features is caused by different rates of material outflow from the active areas depending on which side of the rotating nucleus, illuminated or shadowed, these areas are located. It has been found that the period of the axial rotation of the comet is 21 h.  相似文献   

8.
The spectroscopic observations of comet C/2009 R1 (McNaught) were carried out with the 2 m Zeiss-RCC Telescope of Pik Terskol Observatory operated by the International Center for Astronomical and Medico-Ecological Research (Ukraine, Russia). The Multi Mode Cassegrain spectrometer was used to obtain spectra of moderate spectral resolving power with a wavelength coverage from 4140 to 5240 Å. The spectrum is characterized by the extremely low continuum level and strong molecular features. 192 emission lines of C2, CN, CH, NH2, CO+, and CH+ have been identified by the comparison of the observed and theoretical spectra of the molecules. The ratios of the gas production rates of Q(C2)/Q(CN)=1.32, Q(CH)/Q(CN)=0.49, and Q(NH2)/Q(CN)=0.81 were derived using a Haser model.  相似文献   

9.
Abstract– We have measured the isotopic composition and fluence of solar‐wind nitrogen in a diamond‐like‐carbon collector from the Genesis B/C array. The B and C collector arrays on the Genesis spacecraft passively collected bulk solar wind for the entire collection period, and there is no need to correct data for instrumental fractionation during collection, unlike data from the Genesis “Concentrator.” This work validates isotopic measurements from the concentrator by Marty et al. (2010, 2011) ; nitrogen in the solar wind is depleted in 15N relative to nitrogen in the Earth’s atmosphere. Specifically, our array data yield values for 15N/14N of (2.17 ± 0.37) × 10?3 and (2.12 ± 0.34) × 10?3, depending on data‐reduction technique. This result contradicts preliminary results reported for previous measurements on B/C array materials by Pepin et al. (2009) , so the discrepancy between Marty et al. (2010, 2011) and Pepin et al. (2009) was not due to fractionation of solar wind by the concentrator. Our measured value of 15N/14N in the solar wind shows that the Sun, and by extension the solar nebula, lie at the low‐15N/14N end of the range of nitrogen isotopic compositions observed in the solar system. A global process (or combination of processes) must have operated in interstellar space and/or during the earliest stages of solar system formation to increase the 15N/14N ratio of the solar system solids. We also report a preliminary Genesis solar‐wind nitrogen fluence of (2.57 ± 0.42) × 1012 cm?2. This value is higher than that derived by backside profiling of a Genesis silicon collector ( Heber et al. 2011a ).  相似文献   

10.
Spectroscopic and infrared observations of Comet Sugano-Saigusa-Fujikawa (1983V) were obtained during its close approach to the Earth on 11-14 June 1983. The [O I] production rates of 1.8 +/- 0.9 x 10(26) atoms/s observed on 12.3 June and 7 +/- 3.5 x 10(26) atoms/s on 13.4 June lead to derived water-production rates of 3 x 10(27) mol/s on 12 June and 1.1 x 10(28) mol/s on 13 June. The abundances of the minor species NH2, CN, C2, and C3 are unusually low relative to [O I]. The upper limit to the average nuclear radius from our infrared and visual photometry on 12-13 June (assuming that the entire signal came from the nucleus) is approximately 370 m. The dust/gas mass ratio was <0.01 on June 12 and <0.005 on June 13.  相似文献   

11.
We present a new approach to combine remote observations and in-situ data by STEREO/HI and Wind, respectively, to derive the kinematics and propagation directions of interplanetary coronal mass ejections (ICMEs). We use two methods, Fixed-? (F?) and Harmonic Mean (HM), to convert ICME elongations into distance, and constrain the ICME direction such that the ICME distance–time and velocity–time profiles are most consistent with in-situ measurements of the arrival time and velocity. The derived velocity–time functions from the Sun to 1?AU for the three events under study (1?–?6 June 2008, 13?–?18 February 2009, 3?–?5 April 2010) do not show strong differences for the two extreme geometrical assumptions of a wide ICME with a circular front (HM) or an ICME of small spatial extent in the ecliptic (F?). Due to the geometrical assumptions, HM delivers the propagation direction further away from the observing spacecraft with a mean difference of ≈?25°.  相似文献   

12.
Simultaneous measurements of the upper mesospheric NaD and OH(8,3) band emissions by meridional scanning photometers, and the OI 5577 Å, O2 Atmospheric band at 8645 Å, NaD and OH(8,3) band emissions by multi-channel tilting filter type zenith photometers have been carried out at Cachoeira Paulista (22.7°S, 45.0°W), Brazil. On two nights during the period May–August 1983, the meridional scanning observations showed horizontal intensity gradients and phase propagations. The nocturnal intensity variations on one of these occasions 13–14 June 1983, which was a magnetically disturbed night with 4 ?kp? 8, also showed vertical phase propagation. In this paper, we present these observations and discuss the possible effects of the horizontal wind system and of gravity wave propagation.  相似文献   

13.
We present first results of the photometric and spectroscopic investigation of the B1/B2 Herbig star HD52721 performed in 2009–2010 at three observatories: Mountain Astronomical Station (Kislovodsk)—photometry, CrAO (Crimea, Ukraine)—spectroscopy, Observatory San Pedro Martyr (Ensenada, Mexico)—high-resolution echelle-spectroscopy. We have also used photometric data from the ASAS survey for 2003–2009. Our analysis has shown that a) the object is a close binary system with the orbital period of 1.610 days composed of two components of similar spectral type (B1–B2); b) the system is surrounded by the common disk-like envelope containing azimuthal inhomogeneity rotating with the orbital period of the system. We present preliminary estimates of the system parameters and discuss its possible nature.  相似文献   

14.
The University of Wisconsin–Madison and NASA–Goddard conducted acomprehensive multi-wavelength observing campaign of coma emissionsfrom comet Hale–Bopp, including OH 3080 Å, [O I] 6300 Å H2O+ 6158 Å, H Balmer-α 6563 Å, NH2 6330 Å, [C I] 9850 ÅCN 3879 Å, C2 5141 Å, C3 4062 Å,C I 1657 Å, and the UV and optical continua. In thiswork, we concentrate on the results of the H2O daughter studies.Our wide-field OH 3080 Å measured flux agrees with other, similarobservations and the expected value calculated from published waterproduction rates using standard H2O and OH photochemistry.However, the total [O I] 6300 Å flux determined spectroscopically overa similar field-of-view was a factor of 3-4 higher than expected.Narrow-band [O I] images show this excess came from beyond theH2O scale length, suggesting either a previously unknown source of[O I] or an error in the standard OH + ν→ O(1 D) + H branching ratio. The Hale–Bopp OH and[O I] distributions, both of which were imaged tocometocentric distances >1 × 106 km, were more spatiallyextended than those of comet Halley (after correcting for brightnessdifferences), suggesting a higher bulk outflow velocity. Evidence ofthe driving mechanism for this outflow is found in the Hα lineprofile, which was narrower than in comet Halley (though likelybecause of opacity effects, not as narrow as predicted by Monte-Carlomodels). This is consistent with greater collisional coupling betweenthe suprathermal H photodissociation products and Hale–Bopp's densecoma. Presumably because of mass loading of the solar wind by ionsand ions by the neutrals, the measured acceleration of H2O+ downthe ion tail was much smaller than in comet Halley. Tailwardextensions in the azimuthal distributions of OH 3080 Å,[O I], and [C I] , as well as a Doppler asymmetry in the[O I] line profile, suggest ion-neutral coupling. While thetailward extension in the OH can be explained by increased neutralacceleration, the [O I] 6300 Å and [C I] 9850 Å emissions show 13%and >200% excesses in this direction (respectively), suggesting anon-negligible contribution from dissociative recombination of CO+and/or electron collisional excitation. Thus, models including theeffects of photo- and collisional chemistry are necessary for the fullinterpretation of these data.  相似文献   

15.
We present the analysis of the photometric and spectroscopic data obtained for comet C/2010 X1 (Elenin) when it was at a distance of 2.92 AU from the Sun. The observations were made at the prime focus of the 6-m BTA telescope with the SCORPIO focal reducer. The magnitude of the comet, measured in the R c -band with an 9?? aperture radius amounted to 16?8 ± 0?1. The computed dust production rate was estimated to be about 6 kg/s. The cometary coma manifested the emissions in the (0?C0) band of the CN molecule violet system, and a number of emission band heads of the C3 molecule. The gas production rate of the molecules is determined using the Haser model and amounts to 1.41 × 1024 and 4.20 × 1023 molecules per second for CN and C3, respectively. The ratio of gas production rates log[Q(C3)/Q(CN)] is equal to ?0.85, which is close to the mean value, determined for a significant number of comets. A normalized gradient of the cometary dust reflectivity, calculated for the 4430?C6840 ? spectral range amounts to 14.3 ± 1.2%.  相似文献   

16.
17.
We show how the continuity equation can be used to determine pattern speeds in the Milky Way Galaxy (MWG). This method, first discussed by Tremaine & Weinberg in the context of external galaxies, requires projected positions, ( l , b ), and line-of-sight velocities for a spatially complete sample of relaxed tracers. If the local standard of rest (LSR) has a zero velocity in the radial direction ( u LSR), then the quantity that is measured is  Δ V ≡Ωp R 0- V LSR  , where Ωp is the pattern speed of the non-axisymmetric feature, R 0 is the distance of the Sun from the Galactic centre and V LSR is the tangential motion of the LSR, including the circular velocity. We use simple models to assess the reliability of the method for measuring a single, constant pattern speed of either a bar or spiral in the inner MWG. We then apply the method to the OH/IR stars in the ATCA/VLA OH 1612-MHz survey of Sevenster et al., finding  Δ V =252±41 km s-1,  if   u LSR=0  . Assuming further that   R 0=8 kpc  and   V LSR=220 km s-1,  this gives  Ωp=59±5 km s-1 kpc-1  with a possible systematic error of perhaps 10 km s−1 kpc−1. The non-axisymmetric feature for which we measure this pattern speed must be in the disc of the MWG.  相似文献   

18.
A dual étalon Fabry‐Pérot spectrometer called DEFPOS has been used for observing physical properties of HII regions and planetary nebulae since May 2007 (Aksaker et al. 2009, 2011; Şahan et al. 2009; Şahan 2011). In this study, the Hα measurements of the HII region NGC 1499 (California Nebula) have been investigated with a 4′ circular field of view over a 200 km s–1 (4.4 Å) spectral window. These measurements provide information about the densities, line widths, and radial velocities of the surrounding NGC 1499 nebula. The intensities, the radial velocities and the line widths of the Hα emission line vary from 397.75 R to 1044.14 R, –4.88 km s–1 to –1.02 km s–1, and 36.72 km s–1 to 42.81 km s–1, respectively (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Colom  P.  Gérard  E.  Crovisier  J.  Bockelé-Morvan  D.  Biver  N.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):37-43
We present OH 18-cm observations of comet Hale-Bopp (C/1995 O1) at the Nançay radio telescope. On nucleus and offset position observations allowed us to obtain both OH production rates and quenching radii. The maximum OH production rate was reached around perihelion, at about1031 s-1.  相似文献   

20.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed in the mesosphere and lower thermosphere of Venus (70–120 km), have been mapped across the nightside Venus disk during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as well as Doppler wind fields (described in the companion paper, Clancy et al., 2012). Temporal sampling over the hourly, daily, weekly and interannual timescales was obtained over 2001–2009. On timescales inferred as several weeks, we observe changes between very distinctive CO and temperature nightside distributions. Retrieved nightside CO, temperature distributions for January 2006 and August 2007 observations display strong local time, latitudinal gradients consistent with early morning (2–3 am), low-to-mid latitude (0–40NS) peaks of 100–200% in CO and 20–30 K in temperature. The temperature increases are most pronounced above 100 km altitudes, whereas CO variations extend from 105 km (top altitude of retrieval) down to below 80 km in the mesosphere. In contrast, the 2004 and 2009 periods of observation display modest temperature (5–10 K) and CO (30–60%) increases, that are centered on antisolar (midnight) local times and equatorial latitudes. Doppler wind derived global (zonal and should be SSAS) circulations from the same data do not exhibit variations correlated with these CO, temperature short-term variations. However, large-scale residual wind fields not fit by the zonal, SSAS circulations are observed in concert with the strong temperature, CO gradients observed in 2006 and 2007 (Clancy et al., 2010). These short term variations in nightside CO, temperature distributions may also be related to observed nightside variations in O2 airglow (Hueso, H., Sánchez-Lavega, A., Piccioni, G., Drossart, P., Gérard, J.C., Khatuntsev, I., Zasova, L., Migliorini, A. [2008]. J. Geophys. Res. 113, E00B02. doi:10.1029/2008JE003081) and upper mesospheric SO and SO2 layers (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60).The retrieved temperature profiles also exhibit 20 K long-term (2001–2009) variations in nightside (whole disk) average mesospheric (80–95 km) temperatures, similar to 1982–1991 variations identified in previous millimeter CO line observations (Clancy et al., 1991). Global average diurnal variations in lower thermospheric temperatures and mesospheric CO abundances decreased by a factor-of-two between 2000–2002 versus 2007–2009 periods of combined dayside and nightside observations. The infrequency and still limited temporal extent of the observations make it difficult to assign specific timescales to such longer term variations, which may be associated with longer term variations observed for cloud top SO2 (Esposito, L.W., Bertaux, J.-L., Krasnopolsky, V., Moroz, V.I., Zasova, L.V. [1997]. Chemistry of lower atmosphere and clouds. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), VENUS II, 1362pp) and mesospheric water vapor (Sandor, B.J., Clancy, R.T. [2005]. Icarus 177, 129–143) abundances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号