首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Vegetation canopies control mean and turbulent flow structure as well as surface wave processes in coastal regions. A non-hydrostatic RANS model based on NHWAVE (Ma et al., 2012) is developed to study turbulent mixing, surface wave attenuation and nearshore circulation induced by vegetation. A nonlinear k  ϵ model accounting for vegetation-induced turbulence production is implemented to study turbulent flow within the vegetation field. The model is calibrated and validated using experimental data from vegetated open channel flow, as well as nonbreaking and breaking random wave propagation in vegetation fields. It is found that the drag-related coefficients in the k  ϵ model Cfk and C can greatly affect turbulent flow structure, but seldom change the wave attenuation rate. The bulk drag coefficient CD is the major parameter controlling surface wave damping by vegetation canopies. Using the empirical formula of Mendez and Losada (2004), the present model provides accurate predictions of vegetation-induced wave energy dissipation. Wave propagation through a finite patch of vegetation in the surf zone is investigated as well. It is found that the presence of a finite patch of vegetation may generate strong pressure-driven nearshore currents, with an onshore mean flow in the unvegetated zone and an offshore return flow in the vegetated zone.  相似文献   

2.
植被斜坡岸滩海啸波消减数值模拟研究   总被引:1,自引:0,他引:1  
An explicit one-dimensional model based on the shallow water equations(SWEs) was established in this work to simulate tsunami wave propagation on a vegetated beach. This model adopted the finite-volume method(FVM)for maintaining the mass balance of these equations. The resistance force caused by vegetation was taken into account as a source term in the momentum equation. The Harten–Lax–van Leer(HLL) approximate Riemann solver was applied to evaluate the interface fluxes for tracing the wet/dry transition boundary. This proposed model was used to simulate solitary wave run-up and long-periodic wave propagation on a sloping beach. The calibration process suitably compared the calculated results with the measured data. The tsunami waves were also simulated to discuss the water depth, tsunami force, as well as the current speed in absence of and in presence of forest domain. The results indicated that forest growth at the beach reduced wave energy loss caused by tsunamis. A series of sensitivity analyses were conducted with respect to variable parameters(such as vegetation densities, wave heights, wave periods, bed resistance, and beach slopes) to identify important influences on mitigating tsunami damage on coastal forest beach.  相似文献   

3.
本文基于雷诺平均的Navier-Stokes方程和k-ε模型求解湍流流动,采用流体体积法(Volume of Fluid,VOF)追踪自由表面运动,建立无反射波浪数值水槽,对多消浪室开孔沉箱的消浪特性进行数值模拟研究。将单消浪室和多消浪室开孔沉箱反射系数和结构前波面分布的数值分析结果与物理模型试验结果进行对比验证,两者符合良好。利用数值算例,研究多消浪室开孔沉箱的反射特性以及开孔结构附近的速度场和湍流强度分布。分析结果表明:波浪与开孔沉箱相互作用时,涡旋和湍动主要分布在开孔墙和消浪室内部自由表面附近;与单消浪室开孔沉箱相比,多消浪室开孔沉箱可以更有效的耗散波浪能量,降低结构的反射系数。本文分析结果可为开孔沉箱结构的工程设计提供参考依据。  相似文献   

4.
Wave–current flow is a phenomenon that is present in many practical engineering situations. Over the past several decades, this type of flow has been increasingly investigated under controlled laboratory conditions. This paper presents a numerical study of wave–current flow in the ocean basin of the LabOceano (COPPE/UFRJ). A homogeneous multiphase model based on the RANS equations and the kɛ turbulence model implemented in ANSYS-CFX code were used. A cross section of the ocean basin was represented. A regular wave with a height of 0.08 m and a period of 1.80 s (i.e., a wave steepness of H/L = 0.016), propagating on favourable currents, was simulated. The behaviour of the free surface elevation over time and the streamlines along the basin for wave and wave–current flows were presented. The numerical results were compared to the non-viscous theory given by the Rayleigh equation applied to the problem of wave–current interaction. Good agreement was found between the wave length estimated by the numerical results and the analytical solutions, with a deviation of less than 2%.  相似文献   

5.
刘臻 《中国海洋工程》2011,25(1):169-178
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world.The air chamber is utilized to convert the wave energy into the pneumatic energy.The numerical wave tank based on the two-phase VOF model is established in the present study to investigate the operating performance of OWC air chamber.The RANS equations,standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model.The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.  相似文献   

6.
《Coastal Engineering》2006,53(5-6):463-485
A Navier–Stokes solver with a free surface model is used for simulating wave breaking, undertow, and turbulence in breaking waves. The free surface model is based on the Volume of Fluid concept. Turbulence scales larger than the grid scale are simulated directly while turbulence scales smaller than the grid scale are represented by a sub-grid scale model. Two different approaches for the sub-grid scale model have been applied, which are the Smagorinsky model and a model based on a k-equation for the sub-grid scale turbulence. The waves approach the shore in shore-normal direction and break on a plane constant sloping beach. Periodic spilling and plunging breakers are simulated for 20 and 16 wave periods, respectively. The set-up, undertow, and turbulence levels are compared to experimental results. Despite the rather coarse resolution of the computational domain, satisfactory results for the wave height decay and undertow have been obtained. However, the turbulence levels are over-predicted when using the standard values of the model parameters and a complete answer to this problem has not been found. Furthermore, the evolution of vorticity over the wave period has been studied. It shows that at the initial breaking point vorticity is generated around the vertical as well as around the transverse axis. Later vorticity around the longitudinal axis (offshore–onshore direction) is generated, probably through deformation of vorticity around the other axis.  相似文献   

7.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

8.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed.  相似文献   

9.
《Coastal Engineering》2001,44(1):13-36
Interactions between a solitary wave and a submerged rectangular obstacle are investigated both experimentally and numerically. The Particle Image Velocimetry (PIV) technique is used to measure the velocity field in the vicinity of the obstacle. The generation and evolution of vortices due to flow separation at the corners of the obstacle are recorded and analyzed. It is found that although the size of the vortex at the weatherside of the obstacle is smaller than that at the leeside, the turbulence intensity is, however, stronger. A numerical model, based on the Reynolds Averaged Navier–Stokes (RANS) equations with a kϵ turbulence model, is first verified with the measurements. Overall, the agreement between the numerical results and laboratory velocity measurements is good. Using the RANS model, a series of additional numerical experiments with different wave heights and different heights of the rectangular obstacle are then performed to test the importance of the energy dissipation due to the generation of vortices. The corresponding wave transmission coefficient, the wave reflection coefficient and the energy dissipation coefficient are calculated and compared with solutions based on the potential flow theory. As the height of the obstacle increases to D/h=0.7, the energy dissipation inside the vortices can reach nearly 15% of the incoming wave energy.  相似文献   

10.
Tremendous economic loss and environmental damages are caused by oil-spilling accidents in sea. Accurate prediction of the underwater spreading and surface drifting of oil spills is important for the emergency response. In the present study, numerical investigation on the underwater spread and surface drift of oil spilled from a submarine pipeline under the combined action of wave and current was carried out to examine the effects of physical ocean environment, leaking flux and spilled oil density and viscosity. Reynolds-Averaged-Navier-Stokes (RANS) equations, realizable k-ε turbulence model and volume of fluid (VOF) model are employed to describe the multiphase flow, and velocity-boundary wave-making technique combined with the sponge layer damping absorber technique realizes the numerical wave flume. Oil spill experiments were conducted to validate the numerical model. The calculation results indicate that compared with the environmental conditions of still water, only current and only wave, a larger scope of underwater spreading and relatively slower rising rate and relatively faster drifting rate of oil droplets are observed under the combined action of wave and current. The leaking flux affects the floating time and dispersion concentration, while the ocean environment affects the horizontal migration and surface drifting. Under the specific conditions of present work, oil density has obvious effect on the underwater spread but limited effect on the surface drifting, while oil viscosity has little effect on both the two processes.  相似文献   

11.
Liquid sloshing in storage tank is a fundamental problem of great engineering importance. Sloshing motion can be laminar or turbulent. However, the necessity for inclusion of turbulence in CFD simulation of sloshing flows has not yet been established. In this paper, three roll–induced sloshing cases are studied to assess the merits and shortcomings of the laminar model and three most–commonly used turbulence models (RANS k–ε, LES and Very LES). To overcome the deficiencies in the RANS and LES, the new Very LES (VLES) model, which combines the RANS k–ε and LES, is developed in this paper. The free surface profiles are reconstructed by a coupled Level–Set and Volume–of–Fluid (CLSVOF) method. To the authors’ knowledge, the comprehensive and systematical assessment of the effect of turbulence on sloshing simulation has not been reported in the literature. The numerical results are evaluated using experimental measurements from Delorme and Souto−Iglesias. The present study indicates that the inclusion of an appropriate turbulence model has a profound influence on the simulations of violent and non–violent sloshing flows. The VLES and LES models can provide accurate predictions of free surface profiles and impact pressures, whereas the laminar flow assumption and the RANS model cannot adequately capture the energy dissipation in the sloshing simulation and lead to the inaccurate flow predictions.  相似文献   

12.
《Coastal Engineering》2005,52(3):257-283
Vortex generation and evolution due to flow separation around a submerged rectangular obstacle under incoming cnoidal waves is investigated both experimentally and numerically. The Particle Image Velocimetry (PIV) technique is used in the measurement. Based on the PIV data, a characteristic velocity, phrased in terms of incoming wave height, phase speed, dimension of the obstacle, and a local Reynolds number are proposed to describe the intensity of vortex. The numerical model, which solves the two dimensional Reynolds Averaged Navier Stokes (RANS) equations, is used to further study the effects of wave period on the vortex intensity. Measurements for the mean and turbulent velocity fields further indicate that the time history of the intensity of fluid turbulence is closely related to that of the vortex intensity.  相似文献   

13.
1 .IntroductionApile supportedplatesubmergedatacertaindepthunderseasurfacewasdevelopedasanewtypeofunderwaterbreakwaterfortheprotectionofcoastlinesandharbors .Thisisbecauseitdoesnothinderthewaterexchangebetweentheopenseaandtheprotectedareanordoesithindertheviewovertheopensea .Besides,itislessdependentonthegeotechnicalconditionsoftheseabottomwherethestructureistobeinstalled ;however,itscostishigh ,particularlyinrelativelydeepwaters .Formanyapplicationsitispossibletoreducethewavemotionintheprotec…  相似文献   

14.
Details are given of the refinement and application of a thee-dimensional (3-D) layer-integrated numerical model of tidal circulation, with the aim of simulating severe tidal conditions for practical engineering applications. The mode splitting strategy has been used in the model. A set of depth-integrated 2-D equations are first solved to give the pressure gradient, and the layer-integrated 3-D equations are then solved to obtain the vertical distributions of the flow velocities. Attention has been given to maintaining consistency of the physical quantities derived from the 2-D and 3-D equations. A TWO=layer mixing length turbulence model for the vertical shear stress distribution has been included in the model. Emphasis has been focused on applying the model to a real estuary, which is geometrically complicated and has large tidal ranges giving rise to extensive flooding and drying. The model has been applied to three examples, including: wind-driven flow in a rectangular lake, tidal circulation in a model rectangular harbour, and tidal circulation in a large estuary. Favourable results have been obtained for both the simple and complex flow beds.  相似文献   

15.
This study investigates tsunami-like solitary waves impinging and overtopping an impermeable trapezoidal seawall on a 1:20 sloping beach. New laboratory experiments are performed for describing three typical cases: a turbulent bore rushes inland and subsequently impacts and overtops the seawall (Type 1); a wave directly collapses on the seawall and then generates overtopping flow (Type 2); and, a wave straightforwardly overtops the seawall crown and collapses behind the seawall (Type 3). A two-dimensional volume of fluid (VOF) type model called the COBRAS (COrnell BReaking And Structure) model, which is based on the Reynolds-Averaged Navier–Stokes (RANS) equations and the kε turbulence closure solver, is validated by experimental data and then applied to investigate wave dynamics for which laboratory data are unavailable. Additionally, a set of numerical experiments is conducted to examine the dynamic wave acting force due to waves impacting the seawall. Effects of wave nonlinearity and freeboard are elucidated. Special attention is given to a distinct vortex evolutionary behavior behind the seawall, in which the dynamic properties of entrapped air-bubbles are briefly addressed experimentally and numerically.  相似文献   

16.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

17.
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.  相似文献   

18.
潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟   总被引:14,自引:1,他引:13  
根据近岸带及河口区潮流、波浪、湍流各自物理尺度的不同,从Navier-Stokes方程和质量传输方程出发,利用Reynolds分解的方法,建立了模拟波浪 流联合输沙及海床冲淤演变的理论体系,给出了潮流作用下近岸波浪传播方程、波浪作用下潮流运动方程并通过利用波流合成底部切应力、底层湍流脉动随机特性,得出了波流联合作用下不平衡沙计算中泥沙起悬与沉降量的确定方法。本文模型应用于“广西合浦围垦工程潮流波浪  相似文献   

19.
Vegetation damping effects on propagating water waves have been investigated by many researchers. This paper investigates the effects of damping due to vegetation on solitary water wave run-up via numerical simulation. The numerical model is based on an implementation of Morison's formulation for vegetation induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical scheme and the effects of the vegetation terms in the present model are validated by comparison with experiment results. The model is then applied to simulate a solitary wave propagating on a plane slope with vegetation. The sensitivity of solitary wave run-up to plant height, diameter and stem density is investigated by comparison of the numerical results for different patterns of vegetation. The numerical results show that vegetation can effectively reduce solitary wave propagation velocity and that solitary wave run-up is decreased with increase of plant height in water and also diameter and stem density.  相似文献   

20.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号