首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a camera dedicated to imaging faint transient noctilucent phenomena, such as aurorae, electric discharges, meteors or impact flashes, on dark planetary hemispheres. The Smart Panoramic Optical Sensor Head (SPOSH) is equipped with a back-illuminated 1024×1024 CCD chip E2V 47-20 with up to 90% quantum efficiency and has a custom-made optical system of high light-gathering power with a wide field of view of 120°×120°. Images can be obtained over extended periods at high rate to make monitoring for transient events possible. To reduce the data transmission rate, only those images (or relevant portions thereof) that contain events are returned to the user. The camera has a sophisticated processing unit prepared to interface with a spacecraft system, for image processing and event detection at rates of up to 3 images per second at full resolution. While software optimized for detection of any noctilucent phenomenon can be implemented, the software is currently optimized for the detection of meteors. Over the past years, we have routinely carried out outdoor tests with 4 camera breadboard units that demonstrate that the camera has excellent radiometric performance and geometric resolution at low light levels over its large field of view. The camera has been demonstrated to capture meteors of magnitudes as faint as +6m moving at angular speeds of 5°/s. The camera opens up new science opportunities for planetary missions.  相似文献   

2.
Attitude dynamics data from planetary missions are reviewed to obtain a zeroth-order expectation on the tilts and angular rates to be expected on atmospheric probes during descent: these rates are a strong driver on descent imager design. While recent Mars missions have been equipped with capable inertial measurements, attitude measurements for missions to other planetary bodies are rather limited but some angular motion estimates can be derived from accelerometer, Doppler or other data. It is found that robust camera designs should tolerate motions of the order of 20-40°/s, encountered by Mars Pathfinder, Pioneer Venus, Venera and the high speed part of the Huygens descent on Titan. Under good conditions, parachute-stabilized probes can experience rates of 1-5°/s, seen by the Mars Exploration Rovers and Viking, Galileo at Jupiter, and the slow speed parts of the Huygens descent. In the lowest 20 km of the descent on Titan, the Huygens probe was within 2° of vertical over 95% of the time. Some factors influencing these motions are discussed.  相似文献   

3.
The physics of scattering of electromagnetic waves by media in which the particles are in contact, such as planetary regoliths, has been thought to be relatively well understood when the particles are larger than the wavelength. However, this is not true when the particles are comparable with or smaller than the wavelength. We have measured the scattering parameters of planetary regolith analogs consisting of suites of well-sorted abrasives whose particles ranged from larger to smaller than the wavelength. We measured the variation of reflectance as the phase angle varied from 0.05° to 140°. The following parameters of the media were then deduced: the single scattering albedo, single scattering phase function, transport mean free path, and scattering, absorption, and extinction coefficients. A scattering model based on the equation of radiative transfer was empirically able to describe quantitatively the variation of intensity with angle for each sample. Thus, such models can be used to characterize scattering from regoliths even when the particles are smaller than the wavelength. The scattering parameters were remarkably insensitive to particle size. These results are contrary to theoretical predictions, but are consistent with earlier measurements of alumina abrasives that were restricted to small phase angles. They imply that a basic assumption made by virtually all regolith scattering models, that the regolith particles are the fundamental scattering units of the medium, is incorrect. Our understanding of scattering by regoliths appears to be incomplete, even when the particles are larger than the wavelength.  相似文献   

4.
Keiko Atobe 《Icarus》2007,188(1):1-17
We have investigated the obliquity evolution of terrestrial planets in habitable zones (at ∼1 AU) in extrasolar planetary systems, due to tidal interactions with their satellite and host star with wide varieties of satellite-to-planet mass ratio (m/Mp) and initial obliquity (γ0), through numerical calculations and analytical arguments. The obliquity, the angle between planetary spin axis and its orbit normal, of a terrestrial planet is one of the key factors in determining the planetary surface environments. A recent scenario of terrestrial planet accretion implies that giant impacts of Mars-sized or larger bodies determine the planetary spin and form satellites. Since the giant impacts would be isotropic, tilted spins (sinγ0∼1) are more likely to be produced than straight ones (sinγ0∼0). The ratio m/Mp is dependent on the impact parameters and impactors' mass. However, most of previous studies on tidal evolution of the planet-satellite systems have focused on a particular case of the Earth-Moon systems in which m/Mp?0.0125 and γ0∼10° or the two-body planar problem in which γ0=0° and stellar torque is neglected. We numerically integrated the evolution of planetary spin and a satellite orbit with various m/Mp (from 0.0025 to 0.05) and γ0 (from 0° to 180°), taking into account the stellar torques and precessional motions of the spin and the orbit. We start with the spin axis that almost coincides with the satellite orbit normal, assuming that the spin and the satellite are formed by one dominant impact. With initially straight spins, the evolution is similar to that of the Earth-Moon system. The satellite monotonically recedes from the planet until synchronous state between the spin period and the satellite orbital period is realized. The obliquity gradually increases initially but it starts decreasing down to zero as approaching the synchronous state. However, we have found that the evolution with initially tiled spins is completely different. The satellite's orbit migrates outward with almost constant obliquity until the orbit reaches the critical radius ∼10-20 planetary radii, but then the migration is reversed to inward one. At the reversal, the obliquity starts oscillation with large amplitude. The oscillation gradually ceases and the obliquity is reduced to ∼0° during the inward migration. The satellite eventually falls onto the planetary surface or it is captured at the synchronous state at several planetary radii. We found that the character change of precession about total angular momentum vector into that about the planetary orbit normal is responsible for the oscillation with large amplitude and the reversal of migration. With the results of numerical integration and analytical arguments, we divided the m/Mp-γ0 space into the regions of the qualitatively different evolution. The peculiar tidal evolution with initially tiled spins give deep insights into dynamics of extrasolar planet-satellite systems and discussions of surface environments of the planets.  相似文献   

5.
A large number of spectra measured by the planetary Fourier spectrometer aboard the European Mars Express mission have been studied to identify the average properties of methane in the Martian atmosphere. Using the line at 3018 cm−1, we have studied the seasonal, diurnal, and spatial variations of methane through the analysis of large averages of spectra (more than 1000 measurements). Methane mixing ratio has been obtained simultaneously with water vapour mixing ratio and water ice content, by best fitting (minimising the χ2) the computed averages with synthetic spectra. These spectra were computed for different values of the three parameters (methane and water vapour mixing ratio, and water ice optical depth).The methane mixing ratio shows a slow decrease from northern spring to southern summer with an average value of 14±5 ppbv (part per billion by volume) and it does not show a particular trend with latitude. The methane mixing ratio seems not to be uniform in longitude in the Martian atmosphere, as already reported by Formisano et al. [2004. Detection of methane in the atmosphere of Mars. Science 306, 1758-1761]. Two maxima are present at −40°E and +70°E longitude. In local time, the methane mixing ratio seems to follow the water vapour diurnal cycle. The most important point for future understanding is, however, that there are special orbits in which methane mixing ratio has a very high value.  相似文献   

6.
For impact craters with dimensions such as the Ries crater (corresponding to a 1 km meteorite) it has become a standard reference in textbooks on planetary science that under terrestrial conditions distal transfer of boulders may reach as far as 200 km. In order to test this assumption we simulated the impact-induced ballistic transfer of limestone boulders ejected out of the Ries crater and have come to the conclusion that “Reutersche Blöcke” and “Ries-Brockhorizonte,” found at distances of up to 130 km away, are distal Ries ejecta. Boulders alleged to be Ries components found in Northern Switzerland at distances of up to 200 km away can be related to the Ries event, if the parameters of our numerical simulation are stretched to its limits. Our simulation includes the following assumptions and variables: (1) boulders are ejected from the interference zone at a very early stage of impact; (2) starting conditions may range between velocities of 1 and 4 km/s and 35° to 65° for the flight path angle; (3) drag-free and transitional conditions at the impact site have been incorporated into the density model of the atmosphere; (4) a typical boulder is represented by an suitable aerodynamic drag model; (5) an aerothermal heat model was used to determine heat load.  相似文献   

7.
The optical spectra of the seven late-type Wolf-Rayet central stars NGC-40 (PNG 120.0+09.8, subtype [WC8]), He 2-99 (PNG 309.0–04.2, [WC9]), BD+30°3639 (PN G 064.7+05.0, [WC9]), CPD-56°8032 (PNG 332.9–09.9, [WC11]), He2-113 (PNG 321.0+03.9, [WC11]), M4-18 (PNG 146.7+07.6, [WC11]) and K2-16 (PNG 352.9+11.4, [WC11]) are analyzed by means of spherically expanding model atmospheres. The NLTE simulations account for the elements hydrogen, helium, carbon and oxygen. As main results effective temperature, element abundances and final velocity of the wind are determined for each star. Assuming distances or luminosities for the objects, also the stellar radii and the mass-loss rates can be fixed. The results of these analyses establish empirical constraints for the evolutionary status of WC-type central stars as post-AGB objects and provide input for modeling their planetary nebulae.  相似文献   

8.
A.O. Semenov  G.M. Shved 《Icarus》2008,194(1):290-302
In any planetary atmosphere there is an uppermost layer in which the molecular thermal conduction is a significant mechanism of forming the thermal structure of the atmosphere. In this paper, the similarity approach is first used to develop the 1-D general model of aforementioned layer. The main concepts of the model are (i) the radiative equilibrium condition at the lower boundary of the layer and (ii) taking into account a single rovibrational band for radiative cooling of the layer. Five dimensionless parameters of the model characterize both “strengths” and altitudinal distributions of heat sources and sinks in the layer, including an effect of the atmosphere under the layer. By fitting the modeled temperature profile to the mean empirical profile, both the magnitudes of the parameters and the relations between them have been determined for the Earth and Mars. Distinctions between these planets in both the parameter magnitudes and relationships can be accounted for by distinction in composition of their atmospheres. For both planets the model shows weak sensitivity of the modeled temperature profile to significant changes in the state of the underlying atmosphere. The model demonstrates some prognostic capabilities. Namely, the fitting reveals presence of O in the martian thermosphere. (However, the fractional O abundance is overestimated.) From drag deceleration of the MGS orbiter the mean temperature profile of the martian thermosphere between 115 and 170 km has been derived for the solar zenith angle of 45°-70°, the solar longitude of 30°-80°, and the latitude range from −10° to 60°at a moderate level of solar activity.  相似文献   

9.
Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short‐lived nuclide, 26Al, as the major heat source along with the impact‐induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial ~1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe‐Ni‐FeS) core of radius ~2000 km and a silicate mantle thickness of ~400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact‐induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe‐Ni‐FeS contents to ~71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury‐like exoplanets and the planetary embryos of Venus and Earth.  相似文献   

10.
《Planetary and Space Science》1999,47(10-11):1211-1224
The spectrum of free oscillations of Jupiter is calculated for a set of models, each of them fitting all available observational data. Diagnostic capabilities of the spectrum are studied. They could be used, as soon as relevant observations are performed, for both the identification of the observed modes and the improvement of the models themselves. The calculations were made for five-layer models. They differ in the core mass (2–10 M) and in the molecular-metallic phase transition pressure of hydrogen (1.5–3 Mbar). The spectrum of Jupiter consists of gravitational modes related to density jumps in the planetary interiors and of acoustic modes. The periods of the acoustic modes are calculated for degree up to l=30 and overtone number up to n=20. The investigated models have a characteristic frequency of ≈152–155 μHz. Two outer gravitational modes related to density jumps in the molecular envelope and at the interface with the metallic envelope have nonzero displacements at the planetary surface. These modes have good diagnostic properties. The values of the kinetic energy averaged over the period of oscillation are calculated for a 1-m amplitude of the displacement at the planetary surface. The influence of all effects of rotation on the spectrum is discussed.  相似文献   

11.
Spectra of 197 discrete sources have been obtained in a frequency range 10–1400 MHz. The sources lie at declinations between 0° and +10° and right ascensions from 0–24 h. The spectra have been constructed on the basis of a decametric survey carried out at Grakovo with the UTR-2 radio-telescope, as well as a number of higher frequency surveys performed at Culgoora, Cambridge, Parkes and Ohio. Analysis of the spectrum plots shows that 84% of the spectra are linear (in the logarithmic scale), 11% are characterized by positive and 5% by negative curvature.  相似文献   

12.
Results of spectral observations of blue stellar objects from the FBS are presented for the purpose of classifying them, discovering new interesting objects, and studying the FBS sample as a whole. 99 FBS objects in the band with central declination δ = +43° were observed on the 2.6-m telescope at the Byurakan Observatory in 1987–1991 and have been digitized using a professional scanner and processed by MIDAS in a way similar to CCD spectra. 12 objects were also observed with the BAO-2.6 and OHP-1.93 telescopes using modern techniques during 1997–2000; some were repeated observations for confirming or correcting the classifications. A new planetary nebula, 7 white dwarfs, 78 hot subdwarfs, 9 HBB stars, and 6 stars in classes F-G were discovered. Proper motions in the range 57–84 mas/year were obtained for three stars (DA, DAB, and sdB). Three stars (a white dwarf and two subdwarfs) are identified with x-ray sources. The spectra of the 30 most interesting objects are given. __________ Translated from Astrofizika, Vol. 49, No. 3, pp. 391–405 (August 2006).  相似文献   

13.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

14.
The various and hitherto partially unsolved problems relative to the origin of bipolar jets or highly collimated fast outflows in planetary nebulae are reviewed within the framework of a stationary magnetohydrodynamic model. In order to explain the observations of high polar velocities and the presence of polar blobs or knots in planetary nebulae, theoretical models are proposed taking into account both a large scale azimuthal magnetic field and an anisotropic turbulent velocity field. The models predict equatorial-to-polar density ratios which are rather small, in the range 2 to 3. Conversely, the polar-to-equatorial velocity contrasts are higher, with typical values upto 10. Thus thead hoc hypothesis implicit in the literature that the density contrast is varying in inverse ratio to the velocity one, does not seem well adapted to the bipolar jet phenomenon in planetary nebulae. We point out, therefore, that the bipolar jets have to be considered as a transient aspect of a very complex phenomenon. The model can be applied to objects such as He 2–104 or Mz3, M2–9.  相似文献   

15.
Jade C. Bond  Dante S. Lauretta 《Icarus》2010,205(2):321-19170
No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form “wet” and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.  相似文献   

16.
We present laboratory mid-infrared transmission/absorption spectra obtained from matrix of the hydrated Murchison CM meteorite experimentally shocked at peak pressures of 10-49 GPa, and compare them to astronomical observations of circumstellar dust in different stages of the formation of planetary systems. The laboratory spectra of the Murchison samples exhibit characteristic changes in the infrared features. A weakly shocked sample (shocked at 10 GPa) shows almost no changes from the unshocked sample dominated by hydrous silicate (serpentine). Moderately shocked samples (21-34 GPa) have typical serpentine features gradually replaced by bands of amorphous material and olivine with increasing shock pressure. A strongly shocked sample (36 GPa) shows major changes due to decomposition of the serpentine and due to devolatilization. A shock melted sample (49 GPa) shows features of olivine recrystallized from melted material.The infrared spectra of the shocked Murchison samples show similarities to astronomical spectra of dust in various young stellar objects and debris disks. The spectra of highly shocked Murchison samples (36 and 49 GPa) are similar to those of dust in the debris disks of HD113766 and HD69830, and the transitional disk of HD100546. The moderately shocked samples (21-34 GPa) exhibit spectra similar to those of dust in the debris disks of Beta Pictoris and BD+20307, and the transitional disk of GM Aur. An average of the spectra of all Murchison samples (0-49 GPa) has a similarity to the spectrum of the older protoplanetary disk of SU Auriga. In the gas-rich transitional and protoplanetary disks, the abundances of amorphous silicates and gases have widely been considered to be a primary property. However, our study suggests that impact processing may play a significant role in generating secondary amorphous silicates and gases in those disks. Infrared spectra of the shocked Murchison samples also show similarities to the dust from comets (C/2002 V1, C/2001 RX14, 9P/Tempel 1, and Hale Bopp), suggesting that the comets also contain shocked Murchison-like material.  相似文献   

17.
J. Warell 《Icarus》2002,156(2):303-317
Multicolor photometric observations of the “unknown” hemisphere of Mercury have been performed with the Swedish Vacuum Solar Telescope on La Palma at maximal elongations from the Sun in 1997 and 1998. A set of six interference filters with central wavelengths from 450 to 940 nm were used. Multicolor photometry of Mercury was performed on disk-resolved images of the unknown hemisphere (longitudes 160°-340°) with a highest resolution of ∼200 km (J. Warell and S. Limaye 2001, Planet. Space Sci.49, 1531-1552).Disk-integrated spectrophotometry shows that (1) the spectrum of Mercury displays a linear slope from 650 to 940 nm, indicating that the average mercurian regolith is considerably more mature than relatively immature pure anorthosite regions on the Moon; (2) there is negative evidence for the presence of the putative 1-μm absorption feature near 940 nm due to the presence of ferrous iron (Fe2+) in pyroxenes; and (3) no effect of phase reddening of the integrated disk is observed between phase angles of 63° and 84°.For the first time, disk-resolved spectrophotometry of Mercury's surface has been obtained, from which it is inferred that (4) the scattering properties of Mercury's regolith are more homogeneous than for the Moon and that there is no clear relation between reflectance and chemical properties at spatial scales of ∼300 km on the unknown hemisphere and (5) there exists an inverse relation of spectral slope with emission angle which is larger for Mercury than for the Moon, indicating that the average mercurian regolith is more backscattering and that this effect increases with wavelength.Finally, from filter ratio images of Mercury's disk it is found that (6) no color variations larger that 2% with respect to the surroundings are detected at a spatial resolution of ∼300 km.  相似文献   

18.
We have used the Hubble Space Telescope archived images of Jupiter for the period 1994-2000, complemented by ground-based telescopic observations, to study in detail the long-term properties of synoptic-scale anticyclonic vortices (size > 1500 km, lifetime > months). We have also analyzed a set of Voyager 1 and 2 images obtained in 1979 to compare anticyclone properties from the two different periods. The latitudinal range covered by this survey spans 75°N to 75°S, encompassing 12 anticyclonic zones. We present data on vortex size, aspect ratio, number, latitude location, lifetime, motion, interaction, and morphology for more than 100 vortices. We study empirically the relation between these properties and the mean ambient zonal flow.We show that most of these properties are not related to latitude and location relative to the jet pattern. However, a significant linear anticorrelation is found when plotting vortex relative speed (vortex propagation speed minus zonal flow velocity) against the zonal flow velocity at the central latitude of each vortex. As the mean eastward flow increases its velocity within a given anticyclonic domain, vortex velocity becomes more westward. This relation holds for all anticyclones except those moving at high velocities (at latitudes 20°S and 23°N), whose origin appears to be of a different nature. Moreover, there is also some evidence that the drift rate could be connected to the planetary minus flow vorticity gradient (most conspicuous at 40 and 45°N). We present simple dynamical interpretations of these observations.  相似文献   

19.
O. Muñoz  F. Moreno  D. Grodent  V. Dols 《Icarus》2004,169(2):413-428
We have studied the vertical structure of hazes at six different latitudes (−60°, −50°, −30°, −10°, +30°, and +50°) on Saturn's atmosphere. For that purpose we have compared the results of our forward radiative transfer model to limb-to-limb reflectivity scans at four different wavelengths (230, 275, 673.2, and 893 nm). The images were obtained with the Hubble Space Telescope Wide Field Planetary Camera 2 in September 1997, during fall on Saturn's northern hemisphere. The spatial distribution of particles appears to be very variable with latitude both in the stratosphere and troposphere. For the latitude range +50° to −50°, an atmospheric structure consisting of a stratospheric haze and a tropospheric haze interspersed by clear gas regions has been found adequate to explain the center to limb reflectivities at the different wavelengths. This atmospheric structure has been previously used by Ortiz et al. (1996, Icarus 119, 53-66) and Stam et al. (2001, Icarus 152, 407-422). In this work the top of the tropospheric haze is found to be higher at the southern latitudes than at northern latitudes. This hemispherical asymmetry seems to be related to seasonal effects. Different latitudes experience different amount of solar insolation that can affect the atmospheric structure as the season varies with time. The haze optical thickness is largest (about 30 at 673.2 nm) at latitudes ±50 and −10 degrees, and smallest (about 18) at ±30 degrees. The stratospheric haze is found to be optically thin at all studied latitudes from −50 to +50 degrees being maximum at −10° (τ=0.033). At −60° latitude, where the UV images show a strong darkening compared to other regions on the planet, the cloud structure is remarkably different when compared to the other latitudes. Here, aerosol and gas are found to be uniformly mixed down to the 400 mbar level.  相似文献   

20.
The modern self-consistent photoionization model of planetary nebula luminescence is described. All of the processes which play an important role in the ionization and thermal equilibrium of the nebular gas are taken into consideration. The diffuse ionizing radiation is taken into account completely. The construction of the model is carried out for the radial distribution of gas density in the nebular envelope which is consistent with isophotal map of the nebula. The application of the model is illustrated on the example of the planetary nebulae BD+30°3639 and NGC 7293. It is shown that the continuum of the central star at 912 Å does not correspond to the blackbody spectrum but agrees with the spectrum of corresponding non-LTE model atmosphere. The radial distributions of electron density, electron temperature, and other parameters in the nebular envelopes are found.The evolution of the radial distribution of gas density in the planetary nebulae envelopes is investigated. Approximative analytical expression which describe both such distribution and its change with time is adjusted. It is shown that the nebular envelope is formed as a result of quiet evolution of the slow stellar wind of star-precursor, and the formation of the envelope begins from the decrease of star-precursor's mass loss rate. Obtained radial distributions of gas density in the envelopes of young nebulae rule out the idea that the planetary nebula is formed as a result of a rapid ejection of clear-cut envelope. So, there is no necessity for the superwind which is used for this purpose in theoretical calculations.A new method of the determination of planetary nebulae abundances is proposed. Unobserved ionization stages are taken into account with aid of the correlations between relative abundances of various ions which had been obtained from the grid of the photoionization models of planetary nebulae luminescence. Simple approximative expressions for the determination of He/H, C/H, N/H, O/H, Ne/H, Mg/H, Si/H, S/H, and Ar/H are found. The chemical composition of 130 Galactic planetary nebulae is revised. A comparative analysis of the abundances in the Galactic disk, bulge, and halo nebulae is carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号