首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
 A detailed investigation of the mineralogy of As in the tailings of the Rabbit Lake uranium ore processing facility was conducted. The milling/ore extraction process was sampled at three different locations to obtain information about when, where and under what condition secondary As phases form. These samples were compared with four samples of varying As content from the Rabbit Lake in-pit tailings management facility (TMF). Up to 20% As in the tailings are present in primary minerals that reach the tailings directly because they are not dissolved during the uranium extraction. The remaining 80% constitute As that was dissolved during ore extraction and then re-precipitated before being discharged into the tailings pond. It was not possible to conclusively identify any individual re-precipitated (secondary) As minerals in the Rabbit Lake TMF. Indirect evidence from sequential extraction analyses suggests the presence of an amorphous Ca-As phase and a possible, but unlikely, minor amount of an amorphous Fe-As phase. However, the close association between hydrous ferric oxide (HFO) and As could be clearly demonstrated. HFO was identified to be 2-line ferrihydrite and its XRD pattern geometry indicates a substantial amount of adsorbed As. This is in good agreement with SEM, TEM and sequential extraction analyses that all showed the close association of HFO and As. Received: 14 February 2000 · Accepted: 9 May 2000  相似文献   

2.
 Synchrotron radiation S K-edge XANES spectra and unit-cell parameters are used to investigate the local electronic structure of non-stoichiometric binary and ternary Fe-Co-Ni monosulfide solid solution (mss; M0.923S, M = Fe, Co, Ni) quenched from 800 °C and low pressure. The prominent absorption edge feature of the XANES spectra represents transition of S 1s core level electrons to unoccupied S 3p σ* antibonding orbitals hybridized with empty metal 3d(eg) orbitals. There is a progressive increase in area of the edge peak from Fe0.923S to Ni0.923S and Co0.923S, which correlates with progressive decrease in c and a parameters for the NiAs-type subcell and increase in metallic character, and reflects increase in the number and availability of empty eg β orbitals and covalence of metal-S bonds. More generally, the area of the edge peak exhibits an inverse linear correlation with a, c and unit-cell volume of binary and ternary mss. This inverse linear correlation is attributed to progressive increase in covalence and M-S-M bonding interaction in the c-axis direction, through metal-S [M 3d(eg) - S 3p (or 3d)] π bonding. However, the area of the edge peak does not correlate very well with the average number of 3d electrons per metal atom in these solid solutions, showing that the absorption of synchrotron radiation reflects the local electronic structure of individual absorber atoms (i.e. the SM6 cluster), and is not a group (crystal energy band) effect. Received: 21 March 2000 / Accepted: 14 July 2000  相似文献   

3.
We investigated the valence state and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample with the composition (Mg0.88Fe0.09)(Si0.94Al0.10)O3 between 1 bar and 100 GPa and at 300 K, using diamond cells and synchrotron Mössbauer spectroscopy techniques. At pressures below 12 GPa, our Mössbauer spectra can be sufficiently fitted by a “two-doublet” model, which assumes one ferrous Fe2+-like site and one ferric Fe3+-like site with distinct hyperfine parameters. The simplest interpretation that is consistent with both the Mössbauer data and previous X-ray emission data on the same sample is that the Fe2+-like site is high-spin Fe2+, and the Fe3+-like site is high-spin Fe3+. At 12 GPa and higher pressures, a “three-doublet” model is necessary and sufficient to fit the Mössbauer spectra. This model assumes two Fe2+-like sites and one Fe3+-like site distinguished by their hyperfine parameters. Between 12 and 20 GPa, the fraction of the Fe3+-like site, Fe3+/∑Fe, changes abruptly from about 50 to 70%, possibly due to a spin crossover in six-coordinate Fe2+. At pressures above 20 GPa, the fractions of all three sites remain unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. From 20 to 100 GPa, the isomer shift between the Fe3+-like and Fe2+-like sites increases slightly, while the values and widths of the quadruple splitting of all three sites remain essentially constant. In conjunction with the previous X-ray emission data, the Mössbauer data suggest that Fe2+ alone, or concurrently with Fe3+, undergoes pressure-induced spin crossover between 20 and 100 GPa.  相似文献   

4.
西藏甲玛斑岩成矿系统铜钼元素分离机制探讨   总被引:4,自引:2,他引:4  
西藏甲玛矿床是冈底斯成矿带中东段目前勘查程度最高、第一个规模化开发的超大型斑岩成矿系统,主要由矽卡岩铜多金属矿体、斑岩钼(铜)矿体以及角岩铜钼矿体构成。文章以甲玛矿床角岩矿体和斑岩矿体中典型的"上铜下钼"现象为切入点,借助流体包裹体显微测温、激光拉曼测试、同步辐射X射线荧光分析(SR-XRF)等研究方法,分析了甲玛矿床铜钼矿化阶段成矿流体的物化条件差异及微量元素迁移行为。流体包裹体研究结果表明:铜矿化阶段流体温度(大致在235~451℃,主要集中在340~380℃之间)总体上大于钼矿化阶段流体温度(大致在213~500℃,主要集中在310~360℃之间),但两种成矿流体的盐度大致相似,主要位于18%NaCleqv与30%NaCleqv这两个区间,缺乏盐度中间过渡区,说明成矿流体经历了沸腾作用。激光拉曼显微探针测试结果表明,Cu矿化阶段的流体氧化性较Mo矿化阶段更强,而Mo矿化阶段流体略呈还原性。单个流体包裹体同步辐射X射线荧光分析显示,Cu、Au、Fe、Mn、S、As等元素主要在气相中广泛分布,而Mo则主要残留在液相中迁移富集。因此,本文认为甲玛矿床中角岩型和斑岩型矿体呈现"上铜下钼、早铜晚钼"现象,主要由铜、钼元素本身的物化性质,含矿岩浆性质和侵位顺序与深度,以及含矿岩浆后期所分异出的成矿流体的氧化还原性以及其中S含量的差异所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号