首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄河口有机碳的时空输运特征及其影响因素分析   总被引:9,自引:0,他引:9       下载免费PDF全文
通过2004年4月,2004年9月,2005年9月,2006年4月4个航次,结合2003年8月对河道感潮带的连续同步观测,对低流量下黄河口有机碳的输运特征进行了考察。结果发现:黄河输入至河口的悬浮物中颗粒有机碳(POC)含量约为0.51%,主要以陆源输入为主,几乎不受季节变化影响,由于大量POC含量低的陆源泥沙的稀释作用,浮游植物对总颗粒有机碳的贡献只有在悬浮物含量(TSS)<200mg/L时才能显现出来;黄河口TSS超过455mg/L时,有机碳入海以颗粒有机碳为主;反之,以溶解有机碳为主。黄河口悬浮物在低盐度区沉降作用前后的中值粒径降低,Φ>16μm的悬浮物的沉降作用比Φ<16μm的悬浮物更为剧烈,POC含量随悬浮物粒径的降低而升高,黄河携带的颗粒有机碳80%以上集中在Φ<16μm的TSS中;低流量下,黄河口最大混浊带对POC的过滤效率为65%,混浊带对POC的过滤效应能造成黄河口POC的有效通量被高估;由于受黄河口沉积物向水体解析DOC的影响,在盐度小于10时,DOC几乎不受海水稀释作用的影响,但在盐度大于10的区域DOC与盐度表现出良好的负相关关系,黄河口枯、丰水期淡水端溶解有机碳的有效浓度分别高于实测最高值20%和10%左右,从而造成黄河口DOC有效通量被低估。  相似文献   

2.
The lower reaches of the Coatzacoalcos River in southeast Mexico is an area of intense industrial development. The physico-chemical characteristics of the area have exhibited differences over the years. Apparently from the associated outcroppings of limestone in the Uxpanapa River Basin, the major elements that are dissolved show higher concentrations of Ca, Mg and HCO3 in the waters supplied by this river. The water in the Calzadas River contains high concentrations of Ca, SO4 and HCO3 that are associated with the saline domes crossed by this river. Due to industrial discharges, the sulfate concentration is very high in the water and air during April. Nitrate concentration diminishes with salinity. Higher nitrate as well as nitrite and ammonia levels are present during flood season. Phosphate concentration, associated with high oxygen levels, is higher in January. Zn, Cu and Cr are higher during the dry season (April) when dilution is minimal and low levels of TOC are present. The smaller concentrations of Zn and Cu observed in January are associated with high TOC values in water. The lower levels of Cr present in August are associated with high amounts of suspended matter. Pajaritos Lagoon and Teapa-L, with large industrial discharges, have the highest nutrient and dissolved metal concentrations in the area. Air particles smaller than 2.5 m contain Fe, V, Ti, Cu, Zn, and high amounts of S. These anomalous concentrations of sulfates and metals are attributed to anthropogenic sources.  相似文献   

3.
通过对长江口、杭州湾、舟山海域及东海陆架4个海区表层沉积物样品的粒度敏感组分分析,发现东海陆架与长江口具有相似的三级组分物质组成,杭州湾与舟山海域具有相似的两级组分物质组成.综合4个区域粒级组分分布特征,采用湿分法将4个海域表层沉积物样品分成6个粒级:<0.004 mm,0.004~0.025 mm,0.025~0.063 mm,0.063~0.125 mm,0.125~0.250 mm和>0.250 mm,分别提取各级组分和全样进行有机碳及同位素测试.定量分析各级组分有机碳含量、来源及物质组分,除杭州湾海域粗粒级外,基本上<0.004 mm的粘土组分有机碳含量最高;富集在杭州湾海域粗颗粒中的有机质主要来源于陆源植物碎屑.沉积物颗粒大小、物质组成类型是不同粒级有机质富集的主要控制因素.  相似文献   

4.
Early Eocene hyperthermals are geologically short-lived global warming events and represent fundamental perturbations to the global carbon cycle and the Earth’s ecosystem due to massive additions of isotopically light carbon to the ocean-atmosphere system.They serve as ancient analogs for understanding how the oceanic carbonate system and surface-ocean ecosystem would respond to ongoing and future climate change.Here,we present a continuous carbonate record across the Eocene Thermal Maximum 2(ETM2 or H1,ca.54.1 Ma)and H2(ca.54 Ma)events from an expanded section at Ocean Drilling Program Site 1258 in tropical Atlantic.The abundant calcareous nannofossils and moderate carbonate content throughout the studied interval suggest this record was deposited above the calcite compensation depth(CCD),but below the lysocline and under the influence of terrestrial dilution.An Earth system model cGENIE is used to simulate the carbon cycle dynamics across the ETM2 and H2 to offer insights on the mechanism of the rapid warming and subsequent recovery in climate and ecosystem.The model suggests moderate changes in ocean pH(0.1–0.2 unit)for the two scenarios,biogenic methane from a rechargeable methane capacitor and organic matter oxidation from thawing of the permafrost.These pH changes are consistent with a recent independent pH estimate across the ETM2 using boron isotopes.The carbon emission flux during the ETM2 is at least an order of magnitude smaller than that during the Paleocene–Eocene Thermal Maximum(PETM)(0.015–0.05 Pg C yr-1vs.0.3–1.7 Pg C yr-1).The comparable pre-and post-event carbonate contents suggest the lysocline did not over deepen following the ETM2 at this tropical Atlantic site,indicating spatial heterogeneity in the carbonate system due to strong dilution influence from terrestrial weathering and riverine discharge at Site 1258.  相似文献   

5.
Conventional (one-dimensional) chemostratigraphy of marine carbonates assesses the chemical archive of individual stratigraphic sections and their correlation in space and time. Whereas this approach has shown to be of value when linking isobathymetric domains, usually characterised by similar facies, more caution is needed when correlations are extended across different physiographic settings and hence different facies belts. Here, the spatial geochemical record of Pennsylvanian platform-margin-to-basin transects across a bathymetric range of about 800 m is documented and discussed in a process-oriented context. Particularly, the presence of layered palaeo-water masses and their potential control on slope facies distribution and geochemical properties requires attention. Whereas Carboniferous thermo- and/or chemo-clines most likely affected depth-related slope facies zonation, it was facies change and hence, variances in porosity–permeability properties, that controlled differential early burial diagenetic alteration. Specifically, the lower-slope related breccia facies is characterised by higher volumes of early burial carbonate cements. This implies that these sediments entered the shallow-burial domain with a considerable open pore space and gave way to an increased rock:fluid ratio. Whereas the δ13C record is invariant with bathymetry, the more diagenesis-sensitive δ18O proxy, records pronounced shifts observed across major facies boundaries. From this it is concluded that although the primary controlling factor of slope facies distribution with depth is probably palaeoceanographic in nature, it is differential rock:fluid ratios that control the first-order, spatial shifts in δ18O composition. These findings show that one-dimensional chemostratigraphy will severely underestimate the complexity of three-dimensional (bathymetric) data sets across platform margins. This is of relevance for the interpretation of the geochemical archive of fossil carbonate platforms in general.  相似文献   

6.
施泽进  张瑾  李文杰  田亚铭  王勇  尹观 《岩石学报》2019,35(4):1095-1106
Guadalupian(瓜德鲁普世)晚期是地球演化史中的重要转折期,海退事件、大规模火山作用引起的生物多样性危机,是全球地质灾变的重要组成部分,在扬子克拉通Guadalupian统碳酸盐岩地层中留下了清晰的时空印迹。本文以四川盆地坡渡剖面茅口组顶部的碳酸盐岩地层为研究对象,通过系统的碳、锶同位素、稀土元素测试分析以及生物地层研究,揭示了Guadalupian时期海退事件、峨眉山玄武岩喷发事件的发生与演化过程,并进一步分析了其与生物危机的耦合关系。研究发现,海退事件始于Jinogondolella postserrata带,海平面降低导致陆源物质供给量增加,引起~(87)Sr/~(86)Sr升高、δ~(13)Ccarb负偏、稀土总量上升以及Y/Ho比值降低;峨眉山玄武岩喷发开始于J. altudaensis带,火山作用过程中释放的富~(12)C的CO_2冲击了碳循环系统,大量幔源物质输入到海洋,引起了海水碳酸盐~(87)Sr/~(86)Sr、δ~(13)Ccarb同步负偏移,以及稀土总量与配分模式的急剧改变。Guadalupian时期频繁的水体深度变化,是对峨眉山地幔柱活动的响应。频繁的海退事件造成浅水生物栖息地的不断锐减,持续的火山作用导致大量CO_2、SO2、Cl2等有毒气体的释放,触发了生物多样性危机由浅水逐步扩大到深海。  相似文献   

7.
The Baiyangping Cu–Ag polymetallic ore district is located in the northern part of the Lanping–Simao foreland fold belt, which lies between the Jinshajiang–Ailaoshan and Lancangjiang faults in western Yunnan Province, China. The source of ore-forming fluids and materials within the eastern ore zone were investigated using fluid inclusion, rare earth element (REE), and isotopic (C, O, and S) analyses undertaken on sulfides, gangue minerals, wall rocks, and ores formed during the hydrothermal stage of mineralization. These analyses indicate: (1) The presence of five types of fluid inclusion, which contain various combinations of liquid (l) and vapor (v) phases at room temperature: (a) H2O (l), (b) H2O (l) + H2O (v), (c) H2O (v), (d) CmHn (v), and (e) H2O (l) + CO2 (l), sometimes with CO2 (v). These inclusions have salinities of 1.4–19.9 wt.% NaCl equivalents, with two modes at approximately 5–10 and 16–21 wt.% NaCl equivalent, and homogenization temperatures between 101 °C and 295 °C. Five components were identified in fluid inclusions using Raman microspectrometry: H2O, dolomite, calcite, CH4, and N2. (2) Calcite, dolomitized limestone, and dolomite contain total REE concentrations of 3.10–38.93 ppm, whereas wall rocks and ores contain REE concentrations of 1.21–196 ppm. Dolomitized limestone, dolomite, wall rock, and ore samples have similar chondrite-normalized REE patterns, with ores in the Huachangshan, Xiaquwu, and Dongzhiyan ore blocks having large negative δCe and δEu anomalies, which may be indicative of a change in redox conditions during fluid ascent, migration, and/or cooling. (3) δ34S values for sphalerite, galena, pyrite, and tetrahedrite sulfide samples range from −7.3‰ to 2.1‰, a wide range that indicates multiple sulfur sources. The basin contains numerous sources of S, and deriving S from a mixture of these sources could have yielded these near-zero values, either by mixing of S from different sources, or by changes in the geological conditions of seawater sulfate reduction to sulfur. (4) The C–O isotopic analyses yield δ13C values from ca. zero to −10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.  相似文献   

8.
Drilling through the Palaeoproterozoic bedrock at Forsmark, central Sweden, during the site investigation for a potential geological repository of highly radioactive nuclear waste has provided high quality drill-core material from the upper 1 km of the Fennoscandian Shield. Analyses of stable isotopes (δ13C, δ18O, δ34S, 87Sr/86Sr), rare earth elements and fluid inclusions in fracture filling calcite and pyrite from these drill cores have resulted in the discrimination of several episodes of fracture mineralisations. These events represent migration of fluids during a wide range of conditions, ranging from high-temperature hydrothermal to present-day groundwater circulation. Four major events have been distinguished: 1) Precipitation of epidote, chlorite and quartz under hydrothermal conditions (T > 150–200 °C) during the Proterozoic, sometime between 1.8 and 1.1 Ga. 2) Hydrothermal circulation at temperatures close to 200 °C with precipitation of adularia, albite, prehnite, laumontite, calcite and chlorite. Most of these minerals precipitated during a tectonothermal event between 1.1 and 1.0 Ga, possibly in response to far-field effects of the Sveconorwegian orogeny. 3) Precipitation of mainly quartz, calcite, pyrite and asphaltite occurred during the Palaeozoic, at temperatures between 60 and 190 °C (mainly at < 100 °C). Mixing of a fluid emanating from an organic rich overlying sedimentary cover and a deep basinal fluid from the crystalline bedrock is suggested to have caused this precipitation, possibly as a far-field response to the Caledonian orogeny and/or the development of the Caledonian foreland basin. 4) The youngest generation of fracture minerals is associated with formation of clay minerals and calcite with minor occurrences of pyrite and goethite. These minerals have probably precipitated episodically during a long time period (possibly from the Late Palaeozoic to the present) from various fluids at low temperature conditions (< 50 °C). Few calcites in equilibrium with the present groundwater suggest that the ongoing precipitation of calcite is very limited.  相似文献   

9.
Isotopic and chemical composition of groundwater from wells and springs, and surface water from the basalt-dominated Axum area (northern Ethiopia) provides evidence for the origin of water and dissolved species. Shallow (depth < 40 m) and deep groundwater are distinguished by both chemical and isotopic composition. Deep groundwater is significantly enriched in dissolved inorganic carbon up to 40 mmol l−1 and in concentrations of Ca2+, Mg2+, Na+ and Si(OH)4 compared to the shallow type.The δ2H and δ18O values of all solutions clearly indicate meteoric origin. Shifts from the local meteoric water line are attributed to evaporation of surface and spring water, and to strong water–rock interaction. The δ13CDIC values of shallow groundwater between −12 and −7‰ (VPDB) display the uptake of CO2 from local soil horizons, whereas δ13CDIC of deep groundwater ranges from −5 to +1‰. Considering open system conditions with respect to gaseous CO2, δ13CDIC = +1‰ of the deep groundwater with highest PCO2 = 10−0.9 atm yields δ13CCO2(gas) ≈ −5‰, which is close to the stable carbon isotopic composition of magmatic CO2. Accordingly, stable carbon isotope ratios within the above range are referred to individual proportions of CO2 from soil and magmatic origin. The uptake of magmatic CO2 results in elevated cations and Si(OH)4 concentrations. Weathering of local basalts is documented by 87Sr/86Sr ratios of the groundwater from 0.7038 to 0.7059. Highest values indicate Sr release from the basement rocks. Besides weathering of silicates, neoformation of solids has to be considered, which results in the formation of, e.g., kaolinite and montmorillonite. In several solutions supersaturation with respect to calcite is reached by outgassing of CO2 from the solution leading to secondary calcite formation.  相似文献   

10.
方解石是若尔盖铀矿田与成矿最为密切的脉石矿物之一。方解石的REE地球化学特征研究表明,产于地层中的方解石、矿区中的方解石和含矿方解石具有明显不同的稀土元素组成特征,分别具有轻稀土富集右倾型、重稀土富集左倾型和相对平坦型的3种稀土配分模式。其中产于地层中的方解石明显继承了地层中岩石的稀土元素特征,而含矿方解石表现出与矿石稀土元素相似的特征。碳氧同位素显示地层中的方解石为海洋沉积碳酸盐岩的碳氧同位素组成特征;矿区方解石脉、含矿方解石脉的碳同位素组成明显表现为地幔来源的特点;而矿区方解石脉的氧同位素组成具明显的深部来源特征,含矿方解石脉的氧同位素组成表明在成矿过程中有大气降水的混入。若尔盖铀矿田的方解石主要为热液成因,其矿床成因类型属于典型的热液矿床,成矿流体主要来源于地幔。  相似文献   

11.
Major element chemistry, rare-earth element distribution, and H and O isotopes are conjointly used to study the sources of salinisation and interaquifer flow of saline groundwater in the North East German Basin. Chemical analyses from hydrocarbon exploration campaigns showed evidence of the existence of two different groups of brines: halite and halite Ca–Cl brines. Residual brines and leachates are identified by Br?/Cl? ratios. Most of the brines are dissolution brines of Permian evaporites. New analyses show that the pattern of rare-earth elements and yttrium (REY) are closely linked to H and O isotope distribution. Thermal brines from deep wells and artesian wells indicate isotopically evaporated brines, which chemically interacted with their aquifer environment. Isotopes and rare-earth element patterns prove that cross flow exists, especially in the post-Rupelian aquifer. However, even at depths exceeding 2,000 m, interaquifer flow takes place. The rare-earth element pattern and H and O isotopes identify locally ascending brines. A large-scale lateral groundwater flow has to be assumed because all pre-Rupelian aquifer systems to a depth of at least 500 m are isotopically characterised by Recent or Pleistocene recharge conditions.  相似文献   

12.
In this study, we examine the variations in rare earth elements (REE) from the Lower Kittanning coal bed of eastern Ohio and western Pennsylvania, USA, in an attempt to understand the factors that control mineral matter deposition and modification in coal, and to evaluate possible REE mixed exposure hazards facing underground mine workers. The results of this study suggest that the Lower Kittanning coal mineral matter is derived primarily from a clastic source similar to that of the shale overburden. While highly charged cations like silicon, aluminum, and titanium remained relatively immobile within the coal mineral matter, iron (primarily as pyrite) was added from nonclastic sources, either during deposition of the coal mire vegetation or subsequent to burial. Other mobile cations (e.g., alkali and alkaline earth elements) appear to have been added to and/or leached from the originally deposited clastic mineral matter. Most of the sulfur in the Lower Kittanning coal bed is bound as FeS2 in the mineral matter, but a majority of samples contain a small excess of S that is most likely organically bound.In general, the total rare earth element content (TREE) in coal ash is greater than that in the shale overburden. If the primary source of mineral matter is the same as that for the overlying shale, then REE must have been enriched in the coal mineral matter subsequent to deposition. The total rare earth element content of Lower Kittanning coals correlates strongly with Si concentration ([TREE]≈0.0024 [Si]), which provides a threshold for evaluating possible mixed exposure health effects. Chondrite-normalized REE patterns reveal a shale-like light rare earth element (LREE) enrichment for the coal, similar to that of the shale overburden, again suggesting a primarily clastic REE source. However, when normalized to the shale overburden, most of the coal ash samples display a small but distinct heavy rare earth element (HREE) enrichment. We surmise that the HREE were added and/or preferentially retained during epigenesis, possibly associated with groundwater flow through the coal unit, but not necessarily in close association with the addition of iron. At least some of the “excess” HREE could be organically bound within the Lower Kittanning coal.  相似文献   

13.
湘潭锰矿床的锰矿层赋存于新元古代南华系(成冰系)大塘坡组底部含锰黑色页岩中,含锰矿物主要为菱锰矿。湘潭锰矿的Fe/Mn值低,Th/U、V/(V+Ni)和V/Cr值等地球化学指标显示其发育在氧化-次氧化的沉积环境中,暗示菱锰矿并不是由Mn~(2+)和CO_3~(2-)直接沉淀形成的。湘潭锰矿稀土元素含量高,稀土元素配分模式存在轻微的中稀土元素富集,具有明显的Ce正异常,这些特征指示湘潭锰矿含锰矿物是以锰氧化物或氢氧化物的形式沉淀的。同时,锰矿的碳同位素富集碳的轻同位素,说明有机物参与了菱锰矿的形成过程。综合分析表明,湘潭锰矿成矿过程可以分为沉淀和转化两个阶段:在氧化性的水体中,Mn以氧化物或氢氧化物的形式沉淀;在缺氧且富含有机物质的成岩环境中,Mn氧化物或氢氧化物被有机物还原而转化生成菱锰矿。这与华南地区其他几个典型的大塘坡式锰矿的成矿机制一致。  相似文献   

14.
Mineralogical, textural and geochemical investigations were made to determine the post-depositional evolution of Devonian and Early Carboniferous carbonates from Valle de Tena. The carbonate association is made up of low-Mg calcite, which occurs as micrite, spar cements, neomorphic patches and spar filling veinlets. Non-stoichiometric dolomite and ankerite occur as cements (dolomite also as replacements) in the Middle Devonian, post-dating calcite types. All these phases pre-date tectonic stylolites, indicating compaction after stabilization of the carbonate minerals. Strontium concentrations indicate that Early Devonian and Early Carboniferous micrites initially precipitated as aragonite; Middle and Late Devonian micrites precipitated as high-Mg calcites. Both precursors were diagenetically stabilized to low-Mg calcites through interaction with meteoric waters in phreatic environments. Trace elements in dolomite and ankerite indicate precipitation from Sr-enriched meteoric water. All studied carbonates, except Middle Devonian limestones, precipitated in reducing environments, which favoured incorporation of Fe and Mn. Late calcite generations precipitated from more saline waters than micrites. Light 18O values in micrites suggest alteration mainly in meteoric-phreatic environments. The dolomites and ankerites precipitated from more 18O-depleted fluids than the calcites, suggesting a greater contribution from meteoric waters. Variations in 13C of micrites represent primary secular trends, according to published 13C variations. The 13C oscillations within each succession probably relate to sea-level oscillations. Strontium isotopes also point to a meteoric origin of diagenetic fluids. Model calculations suggest that O and Sr isotopes equilibrated between calcites and fluid at relatively low water/rock ratios, whereas C isotopic signatures are inherited from limestones.  相似文献   

15.
包古图大型斑岩铜矿位于准噶尔盆地西缘。铜矿化主要呈浸染状、细脉浸染状分布于似斑状(石英)闪长岩、闪长玢岩、隐爆角砾岩和少量花岗闪长岩中。依据矿脉的穿插关系和矿物组合,成矿过程经历了黑云母-钾长石-钠长石阶段、石英-硫化物阶段和石英碳酸盐阶段。矿脉中石英的δDSMOW值介于-107‰~-86‰,δ18OSMOW值变化于11.3‰~16.2‰,δ18OH2O值为4.4‰~9.3‰,表明成矿流体来源为深源的岩浆水。硫化物的δ34S值介于-5.1‰~0.7‰,平均为-1.8‰,表明硫来源于深部岩浆或地幔。结合Ⅱ、Ⅲ和Ⅴ号含矿岩体锆石LA-ICP-MSU-Pb年龄及辉钼矿Re-Os年龄,推断包古图铜矿床成矿作用发生在晚石炭世,与中酸性斑岩体的侵入有密切成因关系。  相似文献   

16.
17.
Rare earth element (REE) and strontium isotope data (87Sr/86Sr) are presented for hydromagnesite and surface waters that were collected from Dujiali Lake in central Qinghai-Tibet Plateau (QTP), China. The goal of this study is to constrain the solute sources of hydromagnesite deposits in Dujiali Lake. All lake waters from the area exhibit a slight LREE enrichment (average [La/Sm]PAAS = 1.36), clear Eu anomalies (average [Eu/Eu*]PAAS = 1.31), and nearly no Ce anomalies. The recharge waters show a flat pattern (average [La/Sm]PAAS = 1.007), clear Eu anomalies (average [Eu/Eu*] PAAS = 1.83), and nearly no Ce anomalies (average [Ce/Ce*]PAAS = 1.016). The REE+Y data of the surface waters indicate the dissolution of ultramafic rock at depth and change in the hydrogeochemical characteristics through fluid-rock interaction. These data also indicate a significant contribution of paleo-groundwater to the formation of hydromagnesite, which most likely acquired REE and Sr signatures from the interaction with ultramafic rocks. The 87Sr/86Sr data provide additional insight into the geochemical evolution of waters of the Dujiali Lake indicating that the source of Sr in the hydromagnesite does not directly derive from surface water and may have been influenced by both Mg-rich hydrothermal fluids and meteoric water. Additionally, speciation modeling predicts that carbonate complexes are the most abundant dissolved REE species in surface water. This study provides new insights into the origins of hydromagnesite deposits in Dujiali Lake, and contributes to the understanding of hydromagnesite formation in similar modern and ancient environments on Earth.  相似文献   

18.
In the Precambrian, parts of the Oklo, Okélobondo and Bangombé uranium deposits of the Republic of Gabon, central Africa, functioned as natural fission reactors. Many elements in the Oklo and Bangombé uranium deposits show variations in isotopic composition caused by a combination of nuclear fission, neutron capture and radioactive decay. Isotopic studies provide useful information to understand the behavior of radionuclides in geological media. In our recent work, in situ REE, Pb and U isotopic analyses of individual tiny minerals in and around reactor zones have been performed using a SHRIMP (Sensitive High Resolution Ion Microprobe). The isotopic results of the SHRIMP analyses on micro-minerals found in and around the Oklo and Bangombé natural reactors are reviewed in this paper. The data suggest the selective uptake behavior of (1) Ra into illite, and (2) Pu into apatite, (3) the formation process of secondary minerals bearing fissiogenic REE and depleted U, (4) evidence of nuggets (?-particles) bearing fissiogenic platinum group elements (PGE), and (5) from the U–Pb systematics of highly altered zircons, the redistribution of U and Pb.  相似文献   

19.
Riparian wetlands have multiple source waters that require understanding to effectively manage water quantity and quality. Source waters were determined in an interception-wetland located a relatively flat clayey till terrain in southern Minnesota. Data loggers were used to measure precipitation, water stage from monitoring wells and a tile-drain outlet. Over 70 oxygen (δ18O), hydrogen (δD) and geochemical water samples were collected from seven locations over different seasons (9 events) from 1996 to 1999. Results indicate the dominant source water input to the wetland was drained shallow groundwater beneath intensively managed cropland (P = 0.000). Evapotranspiration was the dominant export pathway. Nitrate–nitrogen (NO3-N) concentrations significantly decreased (P = 0.000) in the cattail-willow portion of the wetland. Total phosphorous (TP) concentrations were relatively high in the grass portion of the wetland (673 ± 549 μg L−1), and relatively low in the cattail-willow portion of the wetland (139 ± 85 μg L−1) because source waters were low in TP. Overall, the interception-wetland design limited out-of-bank flooding, yet allowed sufficient gradient between the cropland and the wetland outlet to minimize potential crop damage and provide hydraulic storage for nutrient attenuation.  相似文献   

20.
Integrated, in situ textural, chemical and electron microprobe age analysis of monazite grains in a migmatitic metapelitic gneiss from the western Musgrave Block, central Australia has identified evidence for multiple events of growth and recrystallisation during poly-metamorphism in the Mesoproterozoic. Garnet + sillimanite-bearing metapelite underwent partial melting and segregation to palaeosome and leucosome during metamorphism between 1330 and 1296 Ma, with monazite grains in leucosome recording crystallisation at 1300 Ma. Monazite breakdown during melting is inferred to have occurred in the palaeosome. During a subsequent granulite facies event at 1200 Ma, deformation and metamorphism of leucosome and palaeosome resulted in partial disturbance of ages and potential minor growth on 1300 Ma monazite in leucosome. Growth of new, high-Y (+HREE) monazite in palaeosome domains occurred during garnet breakdown in the presence of sillimanite to cordierite and spinel, as a result of post-peak isothermal decompression. Diffusive enrichment of resorbed garnet rims in Y + HREE suggests garnet breakdown occurred slower than volume diffusion of REE. Monazite in both palaeosome and leucosome were subsequently partially to penetratively recrystallised during a retrogression event that is suggested to have occurred at 1150–1130 Ma. The intensity of recrystallisation and disturbance of ages appears linked to proximity to retrogressed garnet porphyroblasts and their occurrence in the relatively reactive or ‘fertile’ local environments provided by the palaeosome/mesosome volumes, which caused localised changes in retrogressive fluids towards compositions more aggressive to monazite. Like reaction textures, it is apparent that domainal equilibrium and reaction may control or at least strongly influence monazite REE and U–Th–Pb chemistry and hence ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号