首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cementitious materials will be used for the construction of the engineered barrier of the planned repositories for radioactive waste in Switzerland. Superplasticizers (SPs) are commonly used to improve the workability of concretes and, along with a set accelerator (Acc), to produce shotcrete. In this study the influence of a polycarboxylate- (PCE) and a polynaphthalene-sulphonate-based (PNS) SP on the hydration process, mineral composition and the sorption behaviour of metal cations has been investigated using an ordinary Portland cement (OPC), a low-alkali cement mix (LAC) consisting of CEM III-type cement and nanosilica, and a shotcrete-type cement mix (ESDRED) consisting of a CEM I-type cement and silica fume prepared in the presence of an alkali-free set accelerator.Both the PCE and PNS SP do not significantly influence the amount and quantity of hydrates formed during hydration. The concentration of both SPs decreased rapidly in the early stage of the hydration process for all cements due to sorption onto cement phases. After 28 days of hydration and longer, the concentration of the PNS SP in the pore fluids of all cements was generally lower than that of the PCE SP, indicating stronger uptake of the PNS SP. The formate present in the Acc sorbs only weakly onto the cement phases, which led to higher aqueous concentration of organics in the ESDRED cement than in OPC and LAC.Sorption experiments with 63Ni, 152Eu and 228Th on a cation exchange resin indicate that, at concentrations above 0.1 g L−1, the two SPs could reduce sorption of metal cations. Thermodynamic modelling further indicates that radionuclide complexation by formate at the concentration level in Acc can be excluded, suggesting that the apparent effect of Acc in the sorption measurements on the resin can be attributed to colloids formed owing to the high concentrations of Al and S in Acc. Sorption studies with the same radionuclides on hardened cement paste (HCP) in the presence of concrete admixture solutions and pore fluids squeezed from cement pastes further revealed no significant effect on sorption by either the concrete admixtures or their degradation products that were potentially present in the pore fluids. This finding suggests that the investigated concrete admixtures (PNS, PCE, Acc) and their degradation products have no significant impact on radionuclide mobilisation.  相似文献   

2.
With a half-life of 15.7 Ma, a high mobility and the potential to accumulate in the biosphere, 129I is considered, in safety assessment calculations for radioactive waste repositories, to be one of the main contributors to the radiological dose. Several authors have reported that, at low concentration, I is weakly retained on argillaceous rocks. This process is not yet well-understood and different hypotheses have been put forward as to whether reactive phases or experimental artifacts (e.g. pyrite oxidation) could be the reason for the retention of I observed at low concentration. The aim of this study was to investigate the effect on I mobility of (i) the redox conditions and (ii) the amount of pyrite and natural organic matter (NOM) contents of the rock. These questions were addressed by performing batch sorption, through-diffusion and out-diffusion experiments on rock samples of Toarcian argillaceous rock from Tournemire (Aveyron, France). One of the challenges faced during this study was to distinguish actual transport properties from experimental artifacts. A especially elaborate experimental set-up allowed limiting the (i) oxidation of both argillaceous rock and I, and (ii) carbonate precipitation. A comparison of the batch sorption results obtained for two Toarcian clay specimens, that differed in their amount of pyrite and NOM, allowed relating I sorption to pyrite oxidation. However, no evidence was found to associate the I behavior to the NOM amounts. While the through-diffusion experiments showed a very slight sorption (distribution ratio (Rd) = 0.016 mL g−1) for the lowest I concentration under oxic conditions, the out-diffusion tests performed after the through-diffusion experiments on the same cells showed significant sorption under both oxic and anoxic conditions, resulting in Rd ranging from 0.02 mL g−1 to 1.25 mL g−1. The range of Rd values was higher for the upstream reservoir under oxic conditions. The discrepancies observed between the through-diffusion and the out-diffusion experiments suggest a kinetic control of the I uptake by argillaceous rocks under oxic and anoxic conditions.  相似文献   

3.
Pristine diorite drill cores, obtained from the Äspö Hard Rock Laboratory (HRL, Sweden), were used to study the retention properties of fresh, anoxic crystalline rock material towards the redox-sensitive uranium. Batch sorption experiments and spectroscopic methods were applied for this study. The impact of various parameters, such as solid-to-liquid ratio (2–200 g/L), grain size (0.063–0.2 mm, 0.5–1 mm, 1–2 mm), temperature (room temperature and 10 °C), contact time (5–108 days), initial U(VI) concentration (3 × 10−9 to 6 × 10−5 M), and background electrolyte (synthetic Äspö groundwater and 0.1 M NaClO4) on the U(VI) sorption onto anoxic diorite was studied under anoxic conditions (N2). Comparatively, U(VI) sorption onto oxidized diorite material was studied under ambient atmosphere (pCO2 = 10−3.5 atm). Conventional distribution coefficients, Kd, and surface area normalized distribution coefficients, Ka, were determined. The Kd value for the U(VI) sorption onto anoxic diorite in synthetic Äspö groundwater under anoxic conditions by investigating the sorption isotherm amounts to 3.8 ± 0.6 L/kg which corresponds to Ka = 0.0030 ± 0.0005 cm (grain size 1–2 mm). This indicates a weak U sorption onto diorite which can be attributed to the occurrence of the neutral complex Ca2UO2(CO3)3(aq) in solution. This complex was verified as predominating U species in synthetic Äspö groundwater by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Compared to U sorption at room temperature under anoxic conditions, U sorption is further reduced at decreased temperature (10 °C) and under ambient atmosphere. The U species in aqueous solution as well as sorbed on diorite were studied by in situ time-resolved attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. A predominant sorbing species containing a UO2(CO3)34− moiety was identified. The extent of U sorption onto diorite was found to depend more on the low sorption affinity of the Ca2UO2(CO3)3(aq) complex than on reduction processes of uranium.  相似文献   

4.
《Applied Geochemistry》2005,20(9):1648-1657
An upflow packed column was operated to evaluate the potential of a mixture of municipal compost and calcite to promote sulphidogenesis in the remediation of a simulated mine water at high flows (>0.1 m d−1). Results showed that the pH was neutralised and metals (Fe, Al, Zn, Cu) were significantly removed. Metal removal was attributed to the combined result of precipitation as metal (oxy)hydroxides and carbonates, co-precipitation with these (oxy)hydroxides and sorption onto the compost surface rather than to precipitation as metal sulphides. The two last mechanisms are especially significant for Zn, whose hydroxide is not expected to precipitate at pH 6–7. Before the saturation of compost sorption sites, 60% of the influent Zn was estimated to have been removed by co-precipitation with Fe- and Al-(oxy)hydroxide and 40% by sorption onto the municipal compost.  相似文献   

5.
《Applied Geochemistry》2002,17(4):399-408
The sorption of U(VI) onto the surface of olivine has been experimentally investigated at 25 °C under an air atmosphere as a function of pH, solid surface to volume ratio and total U concentration. Sorption has been observed to decrease as the extent of carbonate complexation of U(VI) in solution increases, which is attributed to the competition between aqueous and solid ligands for the coordination of U. The experimental results have been interpreted by means of two different approaches: (1)a semi-empirical model, exemplified by the application of a Langmuir isotherm and (2) a non-electrostatic thermodynamic surface complexation model which includes the formation of the surface species: >SO–UO2+ and >SO–UO2(OH). The following stability constants for these species have been determined from the thermodynamic analysis: K(>SO–UO2+)=289±71 and K(>SO–UO2(OH))=(3.4±0.4)×10−6. The comparison of the sorption of U onto olivine with granites of different origin indicate that the use of this mineral as additive to the backfill of deep high level nuclear waste repositories could retard the migration of U from the repository to the geosphere.  相似文献   

6.
Reliable thermodynamic models assessing the interaction of radionuclides with cementitious materials are important in connection with long-term predictions of the safe disposal of radioactive waste in cement-based repositories. In this study, a geochemical model of U(VI) interaction with calcium silicate hydrates (C–S–H phases), the main component of hardened cement paste (HCP), has been developed. Uranium(VI) sorption isotherms on C–S–H phases of different Ca:Si ratios (C:S) and structural data from spectroscopic studies provided the indispensable set of experimental data required for the model development. This information suggested that U(VI) is neither adsorbed nor incorporated in the Ca–O octahedral layers of the C–S–H structure, but rather is located in the interlayer, similar to Ca2+ and other cations. With a view to the high recrystallisation rates and the cryptocrystalline ‘gel-like’ structure of the C–S–H phases, these observations indicated a U(VI) uptake driven by the formation of a solid solution.  相似文献   

7.
The interaction of groundwater with cement in a geological disposal facility (GDF) for intermediate level radioactive waste will produce a high pH leachate plume. Such a plume may alter the physical and chemical properties of the GDF host rock. However, the geochemical and mineralogical processes which may occur in such systems over timescales relevant for geological disposal remain unclear. This study has extended the timescale for laboratory experiments and shown that, after 15 years two distinct phases of reaction may occur during alteration of a dolomite-rich rock at high pH. In these experiments the dissolution of primary silicate minerals and the formation of secondary calcium silicate hydrate (C–S–H) phases containing varying amounts of aluminium and potassium (C–(A)–(K)–S–H) during the early stages of reaction (up to 15 months) have been superseded as the systems have evolved. After 15 years significant dedolomitisation (MgCa(CO3)2 + 2OH  Mg(OH)2 + CaCO3 + CO32−(aq)) has led to the formation of magnesium silicates, such as saponite and talc, containing variable amounts of aluminium and potassium (Mg–(Al)–(K)–silicates), and calcite at the expense of the early-formed C–(A)–(K)–S–H phases. This occured in high pH solutions representative of two different periods of cement leachate evolution with little difference in the alteration processes in either a KOH and NaOH or a Ca(OH)2 dominated solution but a greater extent of alteration in the higher pH KOH/NaOH leachate. The high pH alteration of the rock over 15 years also increased the rock’s sorption capacity for U(VI). The results of this study provide a detailed insight into the longer term reactions occurring during the interaction of cement leachate and dolomite-rich rock in the geosphere. These processes have the potential to impact on radionuclide transport from a geodisposal facility and are therefore important in underpinning any safety case for geological disposal.  相似文献   

8.
A novel one-step hydrothermal synthesis of 11 Å tobermorite, a cation exchanger, from a unique combination of waste materials is reported. 11 Å tobermorite was prepared from stoicheiometric quantities of cement bypass dust and waste container glass at 100 °C in water. The product also comprised 10 wt.% calcite and trace quartz as residual parent phases from the cement bypass dust. In a batch sorption study at 20 °C the uptakes of Cd2+ and Pb2+ by the waste-derived tobermorite product were found to be 171 mg g− 1 and 467 mg g− 1, respectively, and in both cases the removal process could be described using a simple pseudo-second-order rate model (k2 = 2.30 × 10− 5 g mg− 1 min− 1 and 5.09 × 10− 5 g mg− 1 min− 1, respectively). The sorption characteristics of the 11 Å tobermorite are compared with those of other waste-derived sorbents and potential applications are discussed.  相似文献   

9.
《Applied Geochemistry》2000,15(1):13-25
The carboxylate (formate, acetate, propionate and oxalate) and common inorganic anions (F, Cl and SO2−4) compositions for aqueous fluid inclusion leachates from 17 mineral samples collected from various deposits have been determined using ion chromatography in conjunction with microthermometric measurements on the fluid inclusions of their host minerals. The minerals, quartz, fluorite, barite, beryl and a few `ore' minerals (wolframite, pyrite and galena), came from hydrothermal vein-type deposits in felsic igneous rocks or Archean metamorphic rocks. The results indicate that short-chain carboxylates are common components in hydrothermal fluids and can be present in considerable amounts. Formic acid (as formate) is the dominant species over other carboxylic acids. The present study raises new questions about the origin and geochemical significance of carboxylates in hydrothermal ore-forming processes.  相似文献   

10.
11.
《Applied Geochemistry》2005,20(11):2082-2096
Calcite is an important component of many potential host rocks currently under consideration for the disposal of radioactive wastes. Even in the chemically disturbed zone formed around a cementitious repository, this mineral remains largely unaffected by the hyper-alkaline waters migrating out of the near field. Thus, due to its abundance and geochemical stability, calcite could play an important role in the retardation of radionuclides released from a repository for nuclear wastes. Actinides are an important class of elements present in almost all radioactive waste streams, and for this reason, investigations of their retention behaviour under representative chemical conditions are particularly relevant to assessing safe disposal in the long term. Organic ligands originating from the degradation of cellulosic materials in the repository or present as cement additives could possibly reduce the retardation of tri- and tetravalent actinides due to the formation of stable metal–ligand complexes in solution. In this study, isosaccharinic acid (ISA) and gluconic acid (GLU) have been taken as representatives of cellulose degradation products and concrete admixtures, respectively. Batch-type sorption experiments have been conducted to investigate the effect of ISA and GLU on the retardation of 152Eu, 241Am and 228Th by calcite. 152Eu and 241Am are representatives of the trivalent lanthanides and actinides, respectively, and 228Th is a representative of the tetravalent actinides.High ISA and GLU concentrations in solution were found to significantly affect the sorption of the radionuclides. Rd values for Eu(III) and Am(III) decreased significantly at ISA concentrations above 10−5 M and at GLU concentrations above 10−7 M. The critical concentration limits were similar for Th(IV), that is 2 × 10−5 M in the case of ISA and 10−6 M in the case of GLU. The effects of ISA and GLU on the immobilisation of Eu(III), Am(III) and Th(IV) were interpreted in terms of complex formation in solution. In the case of Eu(III) and Am(III) in ACW, the metal–ligand complexes were found to have a 1:1 stoichiometry. Complexation constants of these aqueous ISA and GLU complexes with Eu(III) and Am(III) were determined and discussed in connection with the presently unclear situation concerning the stability constant of the Eu(OH)30 species. In the case of Th(IV) in ACW, it was assumed that a Th(IV)–ISA–Ca complex and a Th(IV)–GLU–Ca complex are formed, both having a 1:2:1 stoichiometry. The complexation constants of these complexes were determined and compared with the literature data.Assuming maximum concentrations for ISA and GLU in the pore water of the disturbed zone of a cementitious repository based on representative near-field conditions ([ISA]aq = 3 × 10−6 M, [GLU]aq = 10−7 M), it is predicted that the formation of aqueous ISA and GLU complexes would not significantly affect Eu(III), Am(III) and Th(IV) sorption on calcite.  相似文献   

12.
Lithium-rich brine within the sub-surface of the Salar del Hombre Muerto (SHM) salt pan in the Andes of northwestern Argentina has a chemical and isotopic composition which is consistent with Li derived from several sources: the modern halite saturated lagoon, Li-rich salts and brines formed recently, and dissolution of halite which precipitated from ancient saline lakes. SHM lies in the closed basin that includes part of the massive Cerro Galán caldera which is drained by the Río los Patos, which is responsible for 90% of surface runoff into the salar. The low Li isotope composition, +3.4‰, of this river is consistent with significant contributions of geothermal spring water. As water drains through the volcaniclastic deposits which cover a large proportion of the basin, Li removal, as indicated by decreasing Li/Na, occurs but without significant isotope fractionation. This indicates a mechanism of surface sorption onto smectite or ferrihydrite rather than Li incorporation into octahedral structural sites of clays. These observations suggest that conditions in this high altitude desert have limited the dilution of hydrothermal spring water as well as the formation of clay minerals, which jointly have allowed the Li resource to accumulate rapidly. Changes in climate on a multi-millennial time scale, specifically in the hydrologic budget, have resulted in solute accumulation rates that have been variable through time, and decoupled Li and Na fluxes. Inflow to the salar under modern conditions has high Li/Na (7.9 × 10−3 by wt) with δ7Li indistinguishable from basement rocks (−0.3‰ to +6.4‰), while under pluvial climate conditions the Li/Na of the saline lake was 40 times lower than the modern lagoon (0.1–0.3 × 10−3 compared to 10.6–13.4 × 10−3) with slightly higher δ7Li, +6.9‰ to +12.3‰, reflecting the uptake of 6Li into secondary minerals which formed under a wetter climate.  相似文献   

13.
《Applied Geochemistry》2002,17(5):649-656
Adsorption of Mo on to hydrous TiO2 (anatase) particles was investigated. Batch experiments were conducted at 19 and 90 °C over a pH range of 2 to 12 and Mo concentrations ranging from approximately 10−6 to 10−4 M. The extent of sorption was strongly dependent on pH and surface loading. Maximum sorption was observed in the acidic pH range at low surface loading. Adsorption behavior was described using the empirical Langmuir adsorption model. A constant capacitance surface complexation model was also used to fit the adsorption isotherms using a ligand exchange reaction for a hydroxyl surface site on anatase. Comparison of experimental data at two different temperatures (19 and 90 °C) indicates that Mo sorption in the acidic pH range decreases with increasing temperature.  相似文献   

14.
The sorption of Np(V) and Np(IV) onto kaolinite has been studied in the absence and presence of humic acid (HA) in a series of batch equilibrium experiments under different experimental conditions: [Np]0: 1.0 × 10-6 or 1.0 × 10-5 M, [HA]0: 0 or 50 mg/L, I: 0.01 or 0.1 M NaClO4, solid to liquid ratio: 4 g/L, pH: 6–11, anaerobic or aerobic conditions, without or with carbonate. The results showed that the Np(V) sorption onto kaolinite is affected by solution pH, ionic strength, Np concentration, presence of carbonate and HA. In the absence of carbonate, the Np(V) uptake increased with pH up to ∼96% at pH 11. HA further increased the Np(V) sorption between pH 6 and 9 but decreased the Np(V) sorption between pH 9 and 11. In the presence of carbonate, the Np(V) sorption increased with pH and reached a maximum of 54% between pH 8.5 and 9. At higher pH values, the Np(V) sorption decreased due to the presence of dissolved neptunyl carbonate species with a higher negative charge that were not sorbed onto the kaolinite surface which is negatively charged in this pH range. HA again decreased the Np(V) uptake in the near-neutral to alkaline pH range due to formation of aqueous neptunyl humate complexes. The decrease of the initial Np(V) concentration from 1.0 × 10−5 M to 1.0 × 10−6 M led to a shift of the Np(V) adsorption edge to lower pH values. A higher ionic strength increased the Np(V) uptake onto kaolinite in the presence of carbonate but had no effect on Np(V) uptake in the absence of carbonate.  相似文献   

15.
Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressures to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl type brine with minor amounts of Mg2+, K+, Sr2+ and Br).  相似文献   

16.
Quaternary travertine capping the metamorphic (cement) zones in Uleimat Quarries, central Jordan, has been precipitated from hyperalkaline paleogroundwaters. Such waters are similar to the cement pore water and to the present day hyperalkaline seepages (pH 12.5) in Maqarin, north Jordan. The isotopic depletions observed in Uleimat travertine, with δ13C values as low as −25.45‰, suggest that they have been precipitated during CO2 uptake by highly alkaline calcium hydroxide waters. The travertine in Uleimat Quarries indicates a long-term analog of carbonation and remobilization of silica in cementitious barriers for radioactive waste repositories. The presence of Cr-rich smectites and relatively high levels of Cr (4.1%), V (657 ppm), Ni (163 ppm), Zn (634 ppm) and U (34 ppm) in the green travertine and the associated opaline silica phases suggests the use of the Uleimat travertines as analogs with the repository disturbed zone. Smectites and silica phases are expected to be a sink for alteration products in the late stage evolution of a high pH plume. Co-precipitation of these elements in mineral phases is of great importance to control the concentration of these elements in groundwater.  相似文献   

17.
《Applied Geochemistry》2004,19(1):119-135
Colloid-facilitated transport of contaminants could enhance the release rate of radionuclides from the cementitious near field of a repository for radioactive waste. In the current design of the planned Swiss repository for intermediate-level radioactive waste, a gas-permeable mortar is employed as backfill material for the engineered barrier. The main components of the material are hardened cement paste (HCP) and quartz aggregates. The chemical condition in the backfill mortar is controlled by the highly alkaline cement pore water present in the large pore space. The interaction of pore water with the quartz aggregates is expected to be the main source for colloids. Colloid transport is facilitated due to the high porosity of the backfill mortar. Batch-type studies have been performed to generate colloidal material in systems containing crushed backfill mortar or quartz in contact with artificial cement pore water (ACW) at pH 13.3. The chemical composition of the colloidal material corresponds to that of calcium silicate hydrates (CSH). Batch flocculation tests show that, after about 20 days reaction time, the concentration of the CSH-type colloids is typically below 0.1 mg l−1 due to reduced colloid stability in ACW. Uptake studies with Cs(I), Sr(II) and Th(IV) on a CSH phase (initial C:S ratio=1.09) have been carried out to assess the sorption properties of the colloidal material. The influence of uptake by colloids on radionuclide mobilisation is expressed in terms of sorption reduction on the immobile phase (HCP). Sorption reduction factors can be estimated on the assumption that the sorption properties of the colloidal material are either similar to those of the CSH phase or HCP, and that sorption is linear and reversible. A scaling factor accounts for the higher specific surface area of the colloidal material compared to the CSH phase and HCP. At colloid concentration levels typically encountered in highly alkaline cement pore waters, colloid-induced sorption reduction is predicted to be negligibly small even for strongly sorbing radionuclides, such as Th(IV). Thus, no significant impact of cementitious colloids on radionuclide mobilisation in the porous backfill mortar is anticipated.  相似文献   

18.
Bacterial activity in the near-field environment of radioactive waste disposal facilities in deep argillaceous rocks is currently under investigation. Bacterial development could be enhanced by the availability of low-molecular-weight organic acids (LMWOA) dissolved in the pore water of clayey rocks. This study firstly aimed at isolating and characterizing the LMWOA of the Toarcian argillite from the Tournemire Underground Research Laboratory (France, Aveyron). It also aimed at assessing the disturbing effects that could be induced by a disposal facility on the type and release of LMWOA (exposure to oxygen, alkaline pH, temperature increase). Under the experimental conditions investigated at 60 °C, the mean dissolved organic carbon (DOC) is about 15 mg L−1 with a LMWOA proportion of 35 %. The main LMWOA are composed of formate, fumarate, propionate, acetate, and lactate. DOC is mainly influenced by both temperature and pH increases, whereas the LMWOA type nature and release are more specifically affected by the exposure to oxygen.  相似文献   

19.
Adsorption onto Fe-containing minerals is a well-known remediation method for As-contaminated water and soil. In this study, the use of acid mine drainage sludge (AMDS) to adsorb As was investigated. AMDS is composed of amorphous particles and so has a large surface area (251.2 m2 g−1). Here, adsorption of both arsenite and arsenate was found to be almost 100%, under various initial AMDS dosages, with the arsenate adsorption rate being faster. The optimum pH for As adsorption onto AMDS was pH 7.0 and the maximum adsorption capacities for arsenite and arsenate were 58.5 mg g−1 and 19.7 mg g−1 AMDS, respectively. In addition, experiments revealed that AMDS dosages decreased As release from contaminated soil. Therefore, the AMDS used in this study was confirmed to be a suitable candidate for immobilizing both arsenite and arsenate in contaminated soils.  相似文献   

20.
The interactions between cementitious materials and a clayey deep formation were investigated by studying the specific in situ context of the Tournemire Underground Research Laboratory (URL) of the French Institute for Radioprotection and Nuclear Safety and by reactive transport modelling using the HYTEC code. The study forms part of the safety assessment framework for the deep geological disposal of high to intermediate level long-lived radioactive waste. The in situ context investigated in the Tournemire URL corresponds to an engineered cemented borehole crosscutting the Toarcian argillite formation. The argillite/CEM II cement paste contacts have been in place over 18 a and were sampled in a saturated context outside the excavated disturbed zone (EDZ). Studies of the mineralogy (XRD, carbonatometry, SEM and TEM), petrophysical properties (BET) and geochemistry (TOC, Sr contents, C, O and Sr isotopes, EDS analyses) were carried out both on the argillite and on the cement paste in contact. Alteration of the cement paste is clearly expressed by decalcification and the opening of macroporosity. These modifications are mainly due to the dissolution of portlandite. The neoformation of C–S–H phases was identified in the first few micrometre next to the argillite interface, along with secondary carbonates at the outermost contact. Geochemical measurements argue for the introduction of a sedimentary fluid into the macroporosity of the cement paste to explain the formation of part of these secondary phases. This hypothesis is considered and tested using the HYTEC code, which indicates that such transport could have occurred near the argillite/cement paste contact at a very early stage. After this stage, the transport was reversed and ‘cementitious’ fluids flowed from the cement paste to the argillite. The changes brought about by these fluids are observed over a thickness of 11–13 mm in a so-called ‘black rim’, in which carbonates and C–S–H secondary phases are identified in the matrix of the sediment. An illitization process may also be observed in this altered rim, reaching its maximum development towards the inner part. Geochemical analyses show that the argillite disturbances are strictly confined to the black rim. Theoretical mineralogical profiles based on thermodynamic equilibria defined by the HYTEC code are in good agreement with the observations, and are used to achieve a better understanding of transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号