首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of acid mine drainage (AMD) highly rich in sulfate and multiple metal elements has been investigated in a continuous flow column experiment using organic and inorganic reactive media. Treatment substrates that composed of spent mushroom compost (SMC), limestone, activated sludge and woodchips were incorporated into bacterial sulfate reduction (BSR) treatment for AMD. SMC greatly assisted the removals of sulfate and metals and acted as essential carbon source for sulfate-reducing bacteria (SRB). Alkalinity produced by dissolution of limestone and metabolism of SRB has provided acidity neutralization capacity for AMD where pH was maintained at neutral state, thus aiding the removal of sulfate. Fe, Pb, Cu, Zn and Al were effectively removed (87–100%); however, Mn was not successfully removed despite initial Mn reduction during early phase due to interference with Fe. The first half of the treatment was an essential phase for removal of most metals where contaminants were primarily removed by the BSR in addition to carbonate dissolution function. The importance of BSR in the presence of organic materials was also supported by metal fraction analysis that primary metal accumulation occurs mainly through metal adsorption onto the organic matter, e.g., as sulfides and onto Fe/Mn oxides surfaces.  相似文献   

2.
《Applied Geochemistry》1998,13(2):213-233
Porewater concentration profiles were determined for Fe, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn), sulfide, SO4 and pH in two Canadian Shield lakes (Chevreuil and Clearwater). Profiles of pyrite, sedimentary trace elements associated with pyrite and AVS were also obtained at the same sites. Thermodynamic calculations are used, for the anoxic porewaters where sulfide was measured, to characterize diagenetic processes involving sulfide and trace elements and to illustrate the importance of sulfide, and possibly polysulfides and thiols, in binding trace elements. The ion activity products (IAP) of Fe sulfide agree with the solubility products (Ks) of greigite or mackinawite. For Co, Ni and Zn, IAP values are close to the KS values of their sulfide precipitates; for Cu and Pb, IAP/Ks indicate large oversaturations, which can be explained by the presence of other ligands (not measured) such as polysulfides (Cu) and thiols (Pb). Cobalt, Cu, Ni and Zn porewater profiles generally display a decrease in concentration with increasing ΣH2S, as expected for transition metals, whereas Cd, Pb and Zn show an increase (mobilisation). The results suggest that removal of trace elements from anoxic porewaters occurs by coprecipitation (As and Mn) with FeS(s) and/or adsorption (As and Mn) on FeS(s), and by formation of discrete solid sulfides (Cd, Cu, Ni, Pb, Zn and Co). Reactive Fe is extensively sulfidized (51–65%) in both lakes, mostly as pyrite, but also as AVS. Similarities between As, Co, Cu and Ni to Fe ratios in pyrite and their corresponding mean diffusive flux ratios suggest that pyrite is an important sink at depth for these trace elements. High molar ratios of trace elements to Fe in pyrite from Clearwater Lake correspond chronologically to the onset of smelting activities. AVS can be an important reservoir of reactive As, Cd and Ni and, to a lesser extent, of Co, Cu and Pb. Overall, the trace elements most extensively sulfidized were Ni, Cd and As (maximum of 100%, 81% and 49% of the reactive fraction, respectively), whereas Co, Cu, Mn, Pb and Zn were only moderately sulfidized (11–16%).  相似文献   

3.
The acid mine drainage (AMD) discharged from the Hejiacun uranium mine in central Hunan (China) was sampled and analyzed using ICP-MS techniques. The analyzing results show that the AMD is characterized by the major ions FeTotal, Mn, Al and Si, and is concentrated with heavy metals and metalloids including Cd, Co, Ni, Zn, U, Cu, Pb, Tl, V, Cr, Se, As and Sb. During the AMD flowing downstream, the dissolved heavy metals were removed from the AMD waters through adsorption onto and co-precipitation with metal-oxhydroxides coated on the streambed. Among these metals, Cd, Co, Ni, Zn, U, Cu, Pb and Tl are negatively correlated to pH values, and positively correlated to major ions Fe, Al, Si, Mn, Mg, Ca and K. The metals/metalloids V, Cr, Se, As and Sb are conservative in the AMD solution, and negatively-correlated to major ions Na, Ca and Mg. Due to the above different behaviors of these chemical elements, the pH-negatively related metals (PM) and the conservative metals (CM) are identified; the PM metals include Cd, Co, Ni, Zn, U, Cu, Pb and Tl, and the CM metals V, Cr, Se, As and Sb. Based on understanding the geochemistry of PM and CM metals in the AMD waters, a new equation: EXT = (Acidity + PM)/pH + CM × pH, is proposed to estimate and evaluate extent of heavy-metal pollution (EXT) of AMD. The evaluation results show that the AMD and surface waters of the mine area have high EXT values, and they could be the potential source of heavy-metal contamination of the surrounding environment. Therefore, it is suggested that both the AMD and surface waters should be treated before they are drained out of the mine district, for which the traditional dilution and neutralization methods can be applied to remove the PM metals from the AMD waters, and new techniques through reducing the pH value of the downstream AMD waters should be developed for removal of the CM metals.  相似文献   

4.
Coal mine rejects and sulfide bearing coals are prone to acid mine drainage (AMD) formation due to aqueous weathering. These acidic effluents contain dissolved trace and potentially harmful elements (PHEs) that have considerable impact on the environment. The behavior of these elements in AMD is mainly controlled by pH. The focus of the present study is to investigate aqueous leaching of mine rejects for prediction of acid producing potential, rates of weathering, and release of PHEs in mine drainage. Mine reject (MR) and coal samples from the active mine sites of Meghalaya, India typically have high S contents (1.8–5.7% in MR and 1.7–4.7% in coals) with 75–90% of the S in organic form and enrichment of most of the PHEs in rejects. Aqueous kinetic leaching experiments on mine rejects showed high acid producing potential and release of trace and potentially harmful elements. The elements (Sb, As, Cd, Cr, Co, Cu, Pb, Mn, Ni, V and Zn) in mine sample leachates are compared with those in mine waters. The concentrations of Al, Si, P, K, Ti, Mn, Fe, Co, Ni, Cu, Zn and Pb are found to increase with leaching time and are negatively correlated with pH of the solution. The processes controlling the release of these elements are acid leaching, precipitation and adsorption. The critical loads of PHEs in water affected by AMD are calculated by comparing their concentrations with those of regulatory levels. The Enrichment Factors (EFs) and soil pollution indices (SPIs) for the elements have shown that PHEs from coal and mine reject samples are mobilized into the nearby environment and are enriched in the associated soil and sediment.  相似文献   

5.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

6.
A series of experiments was conducted to better understand the bacterial influence on the release of trace metals during oxidation of sphalerite mineral and element cycles in acid mine drainage (AMD) systems. Batch experiments were carried out as biotic and abiotic control at pH 3. Acidithiobacillus ferrooxidans, sulfur and Fe(II) oxidizer, was used in the biotic sphalerite experiment. The abiotic control experiment was run without adding the bacteria. The release behavior of six trace metals (As, Cd, Co, Pb, Cu and Mn), Fe and Zn were determined during the period of 54 days. Compared to the abiotic experiments, enhanced oxidation of sphalerite by bacteria produced high sulfate (~2,000 mg/L) and Fetot (139 mg/L) along with the low pH (<2.3). Consistent with this, the concentration of trace metals (As, Cd, Co, Pb, Cu and Mn) was significantly higher in the biotic experiments than those in the abiotic experiments. Results indicate that the distributions of Co and Cd in both biotic and abiotic experiments are directly related to the sphalerite dissolution whereas Pb, Cu distribution shows no strong relation to sphalerite dissolution especially in the abiotic experiments. Pb distribution in the solution appears to be controlled by pH-dependent solubility. Approximately 80% of the trace metals were removed from the solution at the end of the biotic experiments along with biologically induced Fe precipitation. Experimental results showed that bacteria play major role not only in the release of trace metal from sphalerite but also in controlling concentration of the metals in the solution by producing Fe-oxyhydroxides. The study suggest that in order to develop an effective rehabilitation strategy for AMD, it is necessary to understand bio/geochemical processes governing mobilization and deposition of trace metals in the environment.  相似文献   

7.
《Applied Geochemistry》2002,17(5):569-581
This study examined the sorption of trace metals to precipitates formed by neutralization of 3 natural waters contaminated with acid mine drainage (AMD) in the former Ducktown Mining District, Tennessee. The 3 water samples were strongly acidic (pH 2.2 to 3.4) but had distinctively different chemical signatures based on the mole fractions of dissolved Fe, Al and Mn. One sample was Fe-rich (Fe=87.5%, Al=11.3%, and Mn=1.3%), another was Al-rich (Al=79.4%, Mn=18.0%, and Fe=2.5%), and the other was Mn-rich (Mn=51.4%, Al=25.7%, and Fe=22.9%). In addition, these waters had high concentrations of trace metals including Zn (37,700 to 17,400 μg/l), Cu (13,000 to 270 μg/l), Co (1,500 to 520 μg/l), Ni (360 to 75 μg/l), Pb (30 to 8 μg/l), and Cd (30 to 6 μg/l). Neutralization of the AMD-contaminated waters in the laboratory caused the formation of either schwertmannite at pH<4 or ferrihydrite at pH>4. Both phases were identified by XRD analyses of precipitates from the most Fe-rich water. At higher pH values (∼5) Al-rich precipitates were formed. Manganese compounds were precipitated at pH∼8. The removal of trace metals depended on the precipitation of these compounds, which acted as sorbents. Accordingly, the pH for 50% sorption (pH50) ranged from 5.6 to 7.5 for Zn, 4.6 to 6.1 for Cu, 5.4 to 7.7 for Ni, 5.9 to 7.9 for Co, 3.1 to 4.3 for Pb, and 5.5 to 7.7 for Cd. The pH dependence of sorption arose not only because of changes in the sorption coefficients of the trace metals but also because the formation and composition of the sorbent was controlled by the pH, the chemical composition of the water, and the solubilities of the oxyhydroxide-sulfate complexes of Fe, Al, and Mn.  相似文献   

8.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

9.
Chemical composition and equilibrium trends in mine pit lakes were examined to provide guidance for the application of geochemical models in predicting future lake water quality at prospective open pit mines. Composition trends show that elevated solute levels generally occur only at the extremes of acidic and alkaline pH conditions. Concentrations of cationic metals (Al, Cd, Cu, Fe, Mn, Pb, and Zn) are elevated only in acidic pit lakes, whereas anionic metalloids (As and Se) are generally elevated only in alkaline pit lakes. These trends are indicative of sulfide mineral oxidation and evapoconcentration for acidic and alkaline conditions, respectively.For nearly all pit lakes, SO4 is the dominant solute, but is limited by gypsum solubility. Fluorite, calcite, and barite are also important solubility controls. Well-defined solubility controls exist for the major metals (Al, Fe, Mn), including jurbanite and alunite for Al, ferrihydrite for Fe, and manganite, birnessite, and, possibly, rhodochrosite for Mn. Determinations of definite controls for the minor metals are less distinct, but may include otavite for Cd, brochantite and malachite for Cu, cerrusite and pyromorphite for Pb, and hydrozincite and Zn silicates for Zn. Concentrations of As and Se appear to be limited only by adsorption, but this control is sharply diminished by increased pH and SO4 concentration. In general, the concentrations of minor metals in pit lakes are not well represented by the theoretical solubilities of pure-phase minerals contained in the thermodynamic databases. Hence, modeling efforts will generally have to rely on empirical data on the leaching characteristics of pit wall-rocks to predict the concentrations of minor metals (Cd, Cu, Pb, Zn) in mine pit lakes.Methodologies for predicting pit lake water chemistry are still evolving. Geochemical and equilibrium trends in existing pit lakes can provide valuable information for guiding the development and application of predictive models. However, mineralogical studies of pit lake sediments, suspended particles, and alteration assemblages and studies of redox transformations are still needed to validate and refine the representations of geochemical processes in water quality models of mine pit lakes.  相似文献   

10.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

11.
Column bioreactors were used for studying mechanisms of metal removal, assessment of long-term stability of spent reactive mixtures, as well as potential metal mobility after treating highly contaminated acid mine drainage (AMD; pH 2.9–5.7). Several physicochemical, microbiological, and mineralogical analyses were performed on spent reactive mixtures collected from 4 bioreactors, which were tested in duplicate for two hydraulic retention times (7.3d and 10d), with downward flow over an 11-month period. Consistent with the high metal concentrations in the AMD feed, and with low metal concentrations measured in the treated effluent, the physicochemical analyses indicated very high concentrations of metals (Fe, Mn, Cd, Ni, and Zn) in the top and bottom layers of the reactive mixtures from all columns. Moreover, the concentrations of Fe (50.8–57.8 g/kg) and Mn (0.53–0.70 g/kg) were up to twice as high in the bottom layers, whereas the concentrations of Cd (6.77–13.3 g/kg), Ni (1.80–5.19 g/kg) and Zn (2.53–13.2 g/kg) were up to 50-times higher in the top layers. Chemical extractions and elemental analysis gave consistent results, which indicated a low fraction of metals removed as sulfides (up to 15% of total metals recovered in spent reactive mixtures). Moreover, Fe and Mn were found in a more stable chemical form (residual fraction was 42–74% for Mn and 30–77% for Fe) relative to Cd, Ni or Zn, which seemed more weakly bound (oxidisable/reducible fractions) and showed higher potential mobility. Besides identifying (oxy)hydroxide and carbonate minerals, the mineralogical analyses identified metal sulfides containing Fe, Cd, Ni and Zn. Metal removal mechanisms were, therefore, mainly adsorption and other binding mechanisms with organic matter (for Cd, Ni and Zn), and the precipitation as (oxy)hydroxide minerals (for Fe and Mn). After 15 months, however, the column bioreactors did not lose their capacity for removing metals from the AMD. Although the metals were immobile during the bioreactor treatment, their mobility could increase from spent reactive mixtures, if stored inappropriately. Metal recovery by acidic leaching of spent substrates at the end of bioreactor operation could be an alternative.  相似文献   

12.
This study provides an assessment of the environmental impact of open pit mining operations at the Cay Cham titanomagnetite-ilmenite deposit (northern Vietnam). The results of surface water sampling indicate the formation of acid mine drainage and contamination of adjacent areas by heavy metals (Cu, Zn, Ni, and Mn). The acid mine drainage is produced by oxidation leaching of sulfide minerals associated with primary mineralization owing to the low neutralization potential of the natural waters in the humid environment of tropical rainforest. The study showed that alternating dry and wet seasons typical of this climatic region promote the generation of stored acidity leading to a sharp decrease in pH of drainage water during the wet season and result in the negative impacts of this mine on both flowing and stagnant surface waters.  相似文献   

13.
《Applied Geochemistry》1997,12(3):243-254
Column flow-through experiments reacting wastewater solutions with sandy loam soil samples were performed to study heavy metal attenuation by two soils with different physical and chemical properties. Reacted soil columns were leached with synthetic acid rain to study the mobility of attenuated heavy metals under leaching conditions. This study demonstrates that cation exchange, surface adsorption, chelation with solid organic material, and precipitation were the important attenuation mechanisms for the heavy metals (Cd, Cr, Cu, Mo, Ph, and Zn). Adsorption on soil hydrous oxide surfaces was the primary attenuation mechanism for Cd and Zn in both soils, and for Cu in a soil with low organic matter content. Wastewater solution pH is also an important factor that influences the retention of heavy metals. Cadmium, Cu, Cr, and Zn became mobile after prolonged application of spiked wastewater solution, either through saturation of soil adsorption sites or due to decreasing pH. Only Cr, Pb, and Mo, which are attenuated primarily through precipitation, show significant net retention by soil. Acid rain water removed heavy metals left in the column residual pore solution and weakly sorbed heavy metals in the soils, and has the ability to mobilize some strongly attenuated heavy metals, especially when the soil organic matter content is high. The results have important applications in predicting heavy metal mobility in contaminated soil, the disposal of acid mine drainage, and assessing the risks of landfall leachate leakage.  相似文献   

14.
Field experiments were conducted over a 460-day period to assess the efficiency of different mixtures of organic substrates to remediate coalmine-generated acid mine drainage (AMD). Five pilot-scale, flow-through bioreactors containing mixtures of herbaceous and woody organic substrates along with one control reactor containing only limestone were constructed at the Tab-Simco site and exposed to AMD in situ. Tab-Simco is an abandoned coal mine near Carbondale, Illinois that produces AMD with pH ∼2.5 and notably high average concentrations of SO4 (5050 mg/L), Fe (950 mg/L), Al (200 mg/L), and Mn (44 mg/L). Results showed that the sequestration of SO4 and metals was achieved in all reactors; however, the presence and type of organic carbon matrix impacted the overall system dynamics and the AMD remediation efficiency. All organic substrate-based reactors established communities of sulfate reducing microorganisms that contributed to enhanced removal of SO4, Fe, and trace metals (i.e., Cu, Cd, Zn, Ni) via microbially-mediated reduction followed by precipitation of insoluble sulfides. Additional mechanisms of contaminant removal were active in all reactors and included Al- and Fe-rich phase precipitation and contaminant surface sorption on available organic and inorganic substrates. The organic substrate-based reactors removed more SO4, Fe, and Al than the limestone-only control reactor, which achieved an average removal of ∼19 mol% SO4, ∼49 mol% Fe, 36 mol% Al, and 2 mol% Mn. In the organic substrate-based reactors, increasing herbaceous content correlated with increased removal efficiency of SO4 (26–35 mol%), Fe (36–62 mol%), Al (78–83 mol%), Mn (2–6 mol%), Ni (64–81 mol%), Zn (88–95 mol%), Cu (72–85 mol%), and Cd (90–92 mol%), while the diversity of the intrinsic microbial community remained relatively unchanged. The extrapolation of these results to the full-scale Tab-Simco treatment system indicated that, over the course of a 460-day period, the predominantly herbaceous bioreactors could remove up to 92,500 kg SO4, 30,000 kg Fe, 8,950 kg Al, and 167 kg Mn, which represents a 18.3 wt%, 36.8 wt%, 4.1 wt% and 82.3 wt% increase in SO4, Fe, Al, and Mn, respectively, removal efficiency compared to the predominantly ligneous bioreactors.The results imply that anaerobic organic substrate bioreactors are promising technologies for remediation of coal-generated AMD and that increasing herbaceous content in the organic substrate matrix can enhance contaminant sequestration. However, in order to improve the remediation capacity, future designs must optimize not only the organic carbon substrate but also include a pretreatment phase in which the bulk of dissolved Fe/Al-species are removed from the influent AMD prior to entering the bioreactor because of 1) seasonal variations in temperature and redox gradients could induce dissolution of the previously formed redox sensitive compounds, and 2) microbially-mediated sulfate reduction activity may be inhibited by the excessive precipitation of Al- and Fe-rich phases.  相似文献   

15.
The potential release of metals from anoxic sediments exposed to oxygen was investigated by using a synthetic preparation of metal sulphides dominated by solid phase FeS. The technique of DGT (diffusive gradients in thin-films) was used to measure sulphide and Fe, Mn and Ni in the anoxic metal-sulphide slurry, which had a pH of 6.4. Speciation calculations based on these data showed there was moderate supersaturation with respect to amorphous FeS in the solution phase. Measurements made using DGT with a range of diffusion layer thicknesses showed that when Fe, Mn and Ni are removed from solution there is fairly rapid (minutes) release from the solid phase, that is reasonably well sustained. This presumed desorptive release will be responsible for elevated concentrations of some metals in solution when sediments are resuspended. Oxidation of the slurry by bubbling with air rapidly (hours) removed Fe, Mn and Ni from the pore water solution. While Fe concentrations in solution remained low after the removal, Mn and Ni were transiently released. These results were consistent with initial rapid oxidation of Fe(II) to oxyhydroxides, which remove Mn(II) and Ni by adsorption. The slower oxidation of FeS then releases Mn and Ni, but these too are eventually removed by adsorption to iron oxyhydroxides. These data suggest that oxidation of metal sulphides will contribute to the release of metals from sediment disturbed by dredging or remedial aeration, but it is likely to be short lived, with complete removal within a day.  相似文献   

16.
The speciation and mobility of some selected trace metals (As, Cu, Mn, Pb and Zn) in sediments with depth was investigated in the Cam River-mouth (Vietnam) by collecting sediment cores and analysing porewater and sediment composition, complemented with single (ammonium-EDTA) and sequential (BCR 3-step) extractions and mineralogical analysis (XRD). All trace metals show overall decreasing trends with depth in porewater as a result of anthropogenic input in upper sediment layers. High porewater concentrations of As, Mn and Pb in oxic and suboxic sediment layers may result in groundwater pollution. Sediment-bound Pb and Mn dominate in the reducible and the acid-soluble fraction, respectively, while Cu and Zn distribute rather evenly between four extracted fractions. The porewater metal speciation, as predicted by a geochemical model Visual MINTEQ version 3.0, indicates that the toxicity of Cu, Mn, Pb and Zn (presented by the proportions of free metal ions) decreases with depth, while the toxicity of As increases when As(III) becomes more abundant. The dissolved concentrations of trace metals are not only controlled by the precipitation/dissolution of discrete hydroxide/oxide, carbonate and phosphate minerals, but also by sorption processes on major sorbents (i.e. As on goethite, and Mn and Zn on calcite and dolomite). Sulphide minerals do not show any control even in the anoxic zone most likely because of the low concentration of sulphur.  相似文献   

17.
We used elemental carbon, nitrogen, hydrogen and sulfur as well as ratios of hydrogen and nitrogen with total organic carbon for investigation of source and conditions of organic matter in alluvial Danube sediments. We also determined the pseudo total concentrations of metals presented as a sum of extracted concentration after five sequential extraction steps. The pseudo total metal concentrations were found to be (mg kg−1) for Mn, 666; Fe, 25,852; Mg, 16,193; K, 2,063; Ni, 32.4; Zn, 72.2; Pb, 15.0; Cu, 26.0 and for Cr, 15.9. Correlation analysis and two multivariate analysis methods (principal component and cluster analysis) were helpful in determining the associations between the pseudo total extracted fractions of metals and with elemental carbon, hydrogen, nitrogen, sulfur, total inorganic and organic carbon. These correlations will help us to identify substrates of trace metals in different oxic/anoxic conditions. The correlation results of the trace metals and Fe, K, Mg and Mn suggest their adsorption, mainly onto Fe and Mn (hydro)oxides and K alumosilicates, whereas correlations of metals with sulfur indicate that they were precipitated as Fe-sulfides.  相似文献   

18.
A 24-cm long sediment core from an oxic fjord basin in Ranafjord, Northern Norway, was sliced in 2 cm sections and analysed for As, Co, Cu, Ni, Hg, Pb, Zn, Mn, Fe, ignition loss and Pb-210. Partitioning of metals between silicate, non-silicate and non-detrital phases was assessed by leaching experiments, in an attempt to understand the mechanisms of surface metal enrichment in sediments. Relative to metal concentrations in sediments deposited in the 19th century, metals in near surface sediments were enriched in the following order: Pb > Mn > Hg > Zn > Cu > As > Fe. Cobalt and Ni showed no enrichment. The non-detrital fraction of Cu, Pb, Mn and Zn was significantly higher in the upper 10 cm than at greater depth in the core. This corresponds to sediments deposited since 1900, when mining activities started in the area. The enrichment of Cu, Pb and Zn is assumed to be mainly a result of mining, while Mn is apparently enriched in the surface due to migration of dissolved Mn and precipitation in the oxic surface layer. Elevated concentrations of As and Fe in the upper 4 cm are presumably due to discharges from a coke plant and an iron works respectively. The excess Hg present in the near surface sediments is tightly bound, either in coal particles or ore dust introduced by local industry, or via long distance transport of atmospheric particles. Calculations of metal flux to the sediments indicate an anthropogenic flux of Zn equal to its natural flux, while the flux of Pb shows a threefold increase above natural input.  相似文献   

19.
Geochemical analyses of lakebed and core sediments from Lake Sambe on the outskirts of Oda City in Shimane prefecture in southwestern Japan were carried out in order to assess the water quality and the concentration and distribution patterns of sixteen elements. The lake water showed a stratified condition with respect to dissolved O2, and As, Fe, and Mn concentrations in the bottom layers which increased in the summer. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements (P, Ca, Sc, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Sr, Zr, Pb, and Th), and total sulfur (TS). Elevated values of As, Zn, V, Fe, P, and TS were present in several layers of the upper cores (from 0 to 5 cm) and other surface sediments. Increases in the abundances of these metals in lake sediments are probably related to the reducing condition of the sediments, fine-grained organic rich sediments, and post-depositional diagenetic remobilization. Moreover, correlations between the concentrations of trace metals and iron in the sediments suggest their adsorption onto Fe (oxy)hydroxides, whereas correlations with sulfur indicate that they were precipitated as Fe-sulfides. The average abundances of As, Pb, Zn, and Cu exceeded the lowest effect level and Interim Sediment Quality Guideline values that the New York State Department of Environmental Conservation and the Canadian Council of Ministers of the Environment determined to have moderate impact on aquatic organisms. In addition, concentrations of As and Zn exceeded the Coastal Ocean Sediment Database threshold value, indicating potentially toxic levels. Therefore, the presence of trace metals in the lake sediments may result in adverse effects on biota health.  相似文献   

20.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号