首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Betic–Rif belt, in the western Mediterranean, experienced a pre-Alpine history and was later extensively reworked by major Alpine tectonics. There is abundant data showing that the Betic chain suffered very high cooling rates during its Alpine history, constrained mainly by geochronology using various isotopic systems and by palaeontological age determinations. In the westernmost part of the chain the high closure-temperature isotopic systems recorded Miocene high-grade metamorphism in the country rocks. In order to constrain the later stages of cooling, fission-track analysis has been applied to both zircon and apatite. The results point to extremely high rates of cooling (400 °C/Ma) between 21 and 19 Ma. Rates slowed to 100 °C/Ma for the time period 19 to about 12 Ma. The fission-track analysis also confirms the existence of an extensional tectonic stage between 19 and 17 Ma.  相似文献   

2.
3.
A palaeomagnetic study of the Ronda peridotites (southern Spain) has been carried out on 301 samples from 20 sites, spread along the three main outcrops of the ultrabasic complex: Ronda, Ojén and Carratraca massifs. Different lithologies and outcrops with different degrees of serpentinization have been sampled and analysed. Rock magnetic experiments have been carried out on a representative set of samples. These measurements include: Curie curves, hysteresis cycles, isothermal remanent magnetization (IRM) acquisition curves, thermal demagnetization of IRM imparted along three orthogonal axes and magnetic bulk susceptibility. Results indicate that magnetite is the main magnetic mineral present in the samples. Stepwise thermal and alternating field (AF) demagnetization of the natural remanent magnetization (NRM) reveals the presence of a characteristic remanent magnetization (ChRM) carried by magnetite, and in some sepentinized samples, a northward component with variable unblocking temperatures up to 250–575 °C. The appearance and the relative intensity of this northward component are strongly related to serpentinization degree. Taking into account the geological history of the peridotites, the ChRM has been considered as a thermo-chemical remanent magnetization acquired during the first serpentinization phase associated to the post-metamorphic cooling of this unit. On the basis of radiometric and fission track analysis, the ChRM is proposed to have been acquired between 20 and 17–18 Ma. The inclination of the mean direction of the ChRM statistically coincides with the expected inclination for stable Iberia during the Oligocene–Miocene. The declination of the ChRM differs from the expected declination, indicating clockwise block rotations of 41±12° about vertical axes since the cooling of the peridotites. When applying a compositional layering correction, the ChRM directions fail to pass this kind of fold test, thus, the compositional layering was not a palaeohorizontal during ChRM acquisition time. Normal and reversed polarities of the ChRM are reported, showing that at least one reversal of the Earth's magnetic field took place during ChRM acquisition process. A tentative polarity zonation within the peridotitic outcrops is also suggested. No evidence is found from these data for the previously proposed simultaneity between post-metamorphic cooling and rotation of the peridotites.  相似文献   

4.
Summary Chromitites (Cr ores) of the Ojen lherzolite massif (Serranía de Ronda, Betic Cordillera, Southern Spain) were found to contain platinum-group minerals (PGM) as discrete inclusions in the chromite and in the associated silicates. The PGM mineralogy consists of sulfides [laurite, erlichmanite, malanite, unnamed (Ni-Fe-Cu)2 (Ir, Rh) S3, unidentified Pd-S], sulfarsenides (irarsite, hollingworthite, ruarsite, and osarsite), arsenides [sperrylite, unidentified (Pd, Ni)-As], one unidentified Pd-Bi compound, and native platinum group elements (PGE) consisting of Ru and Pt-Fe alloys. Textural considerations suggest that the PGE chalcogenides with S and As were formed in the high-temperature magmatic stages, as part of the chromite precipitation event (primary PGM), in contrast with the native PGE, which originated during the low-temperature serpentinization of the ultramafic host of the chromitites (secondary PGM).The primary PGM inclusions in the Ojen chromite are unusual compared with PGM inclusions in chromitites from tectonitic upper-mantle of ophiolites and other alpine-type complexes in that i) they display a great variety of mineral species sulfides, sulfarsenides and arsenides, and ii) comprise specific phases of all six PGE. The singularity of the primary PGM mineralization probably reflects high activities of both S and As during chromite precipitation at Serrania de Ronda to be related with particular physico-chemical conditions during uplifting of sub-continental, astenospheric mantle.The nature, composition, and paragenetic association of secondary PGM at Ojen confirm the relatively-high mobility of the PGE at low temperature, and indicate that remobilization can be selective under appropriate redox conditions causing separation and redistribution of the PGE in the rocks as a result of the alteration process.
Platingruppen-Minerale in chromititen aus dem ojen-lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien)
Zusammenfassung Platingruppen-Minerale in Chromititen aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) In den Chromititen (Cr-Erzen) aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) warden Platingruppen-Minerale (PGM) als einzelne Einschlüsse im Chromit and in den begleitenden Silikaten gefunden. Die Mineralogie der PGM setzt sich aus Sulfiden [Laurit, Erlichmanit, Malanit, einem unbenannten (Ni-Fe-Cu)2 (Ir, Rh)S3 und einem nicht identifizierten Pd-S], Sulfarseniden (Irarsit, Hollingworthit, Ruarsit und Osarsit), Arseniden [Sperrylit, einem nicht identifizierten (Pd, Ni)-As], einer nicht identifizierten Pd-Bi-Verbindung sowie gediegenen Platingruppen-Elementen (PGE) bestchend aus Ru and Pt-Fe-Legierungen, zusammen. Texturelle Untersuchungen haben ergeben, daß die PGE-Chalkogenide mit S und As im Zuge der Chromitfällung (primäre PGM) in den hochtemperierten, magmatischen Stadien gebildet warden, während die gediegenen PGE während der niedriggradigen Serpentini sierung des ultramafischen Nebengesteins der Chromitite (sekundäre PGM) gebildet warden.Die primären PGM-Einschlüsse in den Ojen-Chromiten sind im Vergleich zu PGM-Einschlüssen in Chromititen aus dem tektonisierten oberen Mantel in Ophiolithen und anderen alpinotypen Komplexen ungewöhnlich: i) Einerseits zeigen sie eine große Vielfalt an Mineralarten aus der Gruppe der Sulfide, Sulfarsenide und Arsenide. ii) Andererseits enthalten sie spezifische Phasen aller sechs PGE. Die Einzigartigkeit der primären PGM-Mineralisation könnte hohe Aktivitäten von S and As während der Chromit-Fällung in Serranía de Ronda widerspiegeln, die mit besonderen physiko-chemischen Bedingungen während der Hebung des subkontinentalen, asthenosphärischen Mantels zusammenhängen.Die Art, die Zusammensetzung and die paragenetische Vergesellschaftung von sekundären PGM in Ojen bestätigen die relativ hohe Mobilität der PGE bei niedriger Temperatur und zeigen, daß die Remobilisierung unter geeigneten Redox-Bedingungen selektiv wirken kann, wodurch eine Trennung und Neuverteilung der PGE in den Gesteinen als Ergebnis des Alterationsprozesses bewirkt wird.


With 7 Figures  相似文献   

5.
The Ronda peridotites form the largest mass of subcontinental mantle outcropping on land. Unlike other orogenic lherzolite massifs, the two main bodies of Ronda (the Sierra Bermeja and Sierra Alpujata massifs) are unique cases where ductile shear zones linked to the hot thrusting of mantle over continental crustal rocks are well exposed. We present a new insight into the deformation localization in these shear zones based on structural, fabric and petrological data. The Ronda peridotites show increasing deformation towards the continental footwall rocks, from porphyroclastic rocks to ultramylonites. Garnet-pyroxenites from the basal shear zone of the Alpujata massif yield ca. 1100 °C and 1.4 GPa for the mylonitization. Such conditions promoted partial melting and the formation of felsic dynamothermal aureoles from the underlying crustal rocks. Subsequent deformation is mainly localized in the dynamothermal aureoles, since they are weaker than the peridotites. Both aureoles show marked strain gradients towards the contact but record different kinematics. In Sierra Alpujata, kinematic criteria indicate a top-to-the ENE shear sense, whereas in Sierra Bermeja the felsic mylonites provide a top-to-the NNW motion. A transpressional setting is proposed to explain such kinematic shift.  相似文献   

6.
Structural Petrology of the Ronda Peridotite, SW Spain: Deformation History   总被引:3,自引:3,他引:3  
Solid bodies of upper-mantle peridotite, emplaced in the Betic-Rifchains of SW Spain and North Morocco, show a variety of structuresdeveloped under different metamorphic conditions. These structuresand related metamorphism reflect tectonic processes in the WestMediterranean mantle during orogeny in the Betic-Rif realm.The largest of the peridotites, the Ronda massif, has preservedthree structural domains which are spatially associated withmetamorphic domains previously defined by Obata (Journal ofPetrology, 21,533–572, 1980). These structural domainsinclude: (1) porphyroclastic spinel peridotites (spinel tectonites)and mylonitic garnet-spinel peridotites (garnet-spinel mylonites),developed during progressive strain localization at ambientconditions changing from the Arigite subfacies to garnet peridotitefacies; (2) seemingly undeformed granular peridotites, developedduring a phase of extensive recrystallization affecting thespinel tectonites and garnet-spinel mylonites at Seiland subfaciesconditions, and separated from the spinel tectonites by a well-preservedrecrystallization front which forms a marked structural, metamorphicand possibly geochemical boundary probably unique to orogenicperidotites; (3) porphyroclastic plagioclase peridotites (plagioclasetectonites) developed at the expense of the granular peridotitesduring progressive shear localization allied to ductile emplacementof the Ronda massif into the crust. Our structural and microstructural data from the Ronda massifallow us to assess the relative ages of the different metamorphicfacies seen in the West Mediterranean peridotites. In orderof decreasing relative age, these are: Arigite-subfacies, garnetperidotite facies, Seiland subfacies and plagioclase peridotitefacies. In addition, the associated microstructures providesome insight into the microphysical conditions controlling thedevelopment of the different structures and, as a result, thestructural and chemical heterogeneity of the West Mediterraneanperidotites. KEY WORDS: structural geology; peridotite; Betic Cordillera; Ronda; recrystallization; strain localization *Corresponding author. Present address: Philips Electron Optics BV, Applications Laboratory, Building AAE, PO Box 218, 5600 MD Eindhoven, The Netherlands  相似文献   

7.
The Limo harzburgites constitute a hm-thick tectonic stack where extremely elongated meter-scale sheath folds occur, bearing axes parallel to the macroscopic lineation recognized across the whole complex. They can be identified as close to L-type tectonites, with a weak foliation, a well-developed stretching, and a mineral lineation defined by the mineral assemblage in equilibrium. The linear fabric is recognizable at every scale, from aerial photos to the crystallographic orientation of the harzburgite-forming minerals measured by means of the electron back-scatter diffraction technique. These rocks registered initial deformation under high-temperature and low water fugacity conditions at low stress levels in an anhydrous mantle wedge context, as it is inferred from the activity of the [100](010) slip system in olivine. Then, the ongoing eo-Variscan subduction incorporated fluid/melts from the subducting plate into the suprasubduction mantle wedge zone. The variation in the ambient physicochemical conditions led to the operation of the [001](010) slip system in olivine, indicative of lower temperature and higher water fugacity and stress levels. These changes are recorded, too, by synkinematic recrystallization of oriented chlorite. The L-type fabric of clinopyroxene points to constriction conditions during deformation. The active deformational processes continued along the subduction conduit with the thrust of the peridotites onto the high-pressure granulites of the Bacariza Formation. Posteriorly, the whole ensemble would have shared a common deformational history related to exhumation and initial amphibolitization. Subsequent deformation processes under greenschist facies conditions took place until effective continental collision during the Early Carboniferous gave rise to the Variscan orogen.  相似文献   

8.
 It is well established that porous melt flow in the upper mantle may significantly affect partial mantle melt compositions. Less well established are the length-scale of porous flow and whether porous melt flow can be a volumetrically important magmatic process. The only source for observations concerning the length-scale and nature of pervasive porous melt flow are peridotite massifs. Here we present such observations in the form of structural, and major and trace element data from peridotites of the Ronda massif, southern Spain. Trace element concentrations were obtained with high analytical precision (ICP-MS) and include trace elements rarely analysed in peridotites, such as Rb, Th, Nb and Ta. The western portion of the Ronda massif can be divided into two structural facies. The first and oldest is composed of deformed, porphyroclastic spinel peridotites, the second of virtually undeformed granular spinel peridotites. They are separated by a recrystallisation front across which grain growth of all phases occurred. The granular domain can be further subdivided into three subfacies: coarse-granular, fine-granular, and layered-granular peridotites. According to structural facies, km-scale spatial variations unrelated to Ca and Al abundances have been recognised for mg-numbers [atomic Mg/(Mg±Fe)] and incompatible elements such as rare earth elements (REE), Th and high-field-strength elements (HFSE; including Ti). Such variations are reminiscent of those commonly ascribed to mantle metasomatism, but have never been documented on the km-scale. The origin of the recrystallisation front is related to km-scale pervasive melt percolation. Feed-back processes between grain growth and melt fraction could have led to important accumulation of melt at the recrystallisation front, accomplished mainly by melting/dissolution. Variation in melt fraction across the front explains the spatial variation in the degree of recrystallisation, mg-numbers, REE fractionation, and HFSE abundances, and could account for many of the classical differences between basalts from convergent and extensional tectonic settings. Whereas the coarse-granular peridotites reflect a stage of steady-state pervasive porous melt flow, the fine- and layered-granular facies probably reflect the terminate stages of porous melt flow. Processes associated with both domains are pyroxene-forming freezing reactions at decreasing melt volumes, and progressive channelling of melt flow associated with olivine-producing reactions. Both processes show complex overprinting relationships in both time and space. Received: 10 January 1995/Accepted: 1 September 1995  相似文献   

9.
Large ultramafic masses along the western margin of the Alboran Sea were emplaced in two stages. The first, “hot” stage of emplacement was post-Triassic and pre-Oligocene in age. The second, “cold” stage of emplacement was of Oligo-Miocene age.The first stage caused the development of polymetamorphic aureoles in the surrounding crustal rocks. Metamorphic conditions in the contact zone of the composite aureole series changed from HP-HT to LP-HT. The HP-HT phase of metamorphism created a primary dynamo-thermal aureole. LP-HT metamorphism took place under mainly static conditions. Present contact relations are mainly defined by the amount of secondary dislocation during hot emplacement of mantle off-shoots from the base into the higher levels of the crust. Where the primary contacts between crustal and ultramafic rocks have remained undisturbed by secondary emplacement aureoles with kinzigite series were developed. Although these rocks have partly recrystallized under LP-HT conditions, their original HP-HT characteristics are largely preserved. In other localities, however, secondary dislocation brought mantle rock in contact with lower grade zones of the primary aureole and caused the development of cordierite- and feldspar-rich hornfelses and migmatites of the cordierite-feldspar hornfels series along the new contacts of the ultramafic rocks.Metapelites with composite facies series, very similar to aureole rocks of the Serranía de Ronda but not associated with high-temperature ultramafics, are found in scattered exposures along the Spanish coast east of the Serranía de Ronda over a distance of approximately 300 km.Cold thrusting during the second stage of emplacement obscured the relations between aureole and ultramafic rocks and gave rise to tectonic contacts of younger age (imbrication). In many places broad zones of mylonite and numerous serpentine lenses formed along the younger thrust planes.  相似文献   

10.
张利  杨经绥  刘飞  连东洋  黄健  赵慧  杨艳 《岩石学报》2016,32(12):3649-3672
西藏阿里地区的南公珠错蛇绿岩产在公珠错的南侧,空间上属于雅鲁藏布江缝合带西段之南亚带蛇绿岩。该蛇绿岩主要由地幔橄榄岩和辉长岩等基性岩类组成。地幔橄榄岩中约80%为方辉橄榄岩,20%为二辉橄榄岩,纯橄岩较少。南公珠错地幔橄榄岩矿物化学特征表现为橄榄石具有较低的Fo(89.3~91.4)值、辉石具有较高的Al_2O_3含量(1.89%~6.06%)、尖晶石具有较低的Cr~#(12.7~28.3)值。与原始地幔相比南公珠错地幔橄榄岩的全岩地球化学特征具有较高的MgO含量和较低的Al_2O_3、CaO和TiO_2等易熔元素含量;方辉橄榄岩和二辉橄榄岩的稀土元素总含量分别介于0.66×10-6~1.10×10-6和0.90×10~(-6)~3.78×10~(-6)之间,明显低于原始地幔值,其稀土元素配分模式为轻稀土元素轻微富集型;在原始地幔标准化微量元素蜘蛛图中,南公珠错地幔橄榄岩显示出强烈的U正异常、Nd轻微正异常和强不相容元素Zr的负异常;方辉橄榄岩和二辉橄榄岩的铂族元素总量分别介于15.26×10~(-9)~25.23×10~(-9)和18.74×10~(-9)~26.86×10~(-9)之间,二者含量的变化较小,南公珠错地幔橄榄岩PGEs球粒陨石标准化图解显示其为接近于原始地幔的"平坦型"。南公珠错地幔橄榄岩的矿物化学和全岩地球化学特征与深海橄榄岩相似,指示它们可能形成于大洋扩张脊环境。定量模拟估算表明,南公珠错地幔橄榄岩可能来源于地幔中的尖晶石相二辉橄榄岩源区,系经历了至多16%部分熔融的残余。LREE的微富集和较高的Pd/Ir、Rh/Ir比值指示它们还经历了岩石-熔体反应作用。初步结论认为南公珠错地幔橄榄岩形成于大洋脊环境,为尖晶石相二辉橄榄岩地幔源区较低程度部分熔融的残余,但经历了后期岩石-熔体反应作用。  相似文献   

11.
We investigate the stress regimes acting during serpentinization and faulting of the largest known subcontinental lithospheric peridotite body, namely the Ronda peridotites (Betic Cordillera, S. Spain). Petrological and structural analyses on serpentinites grown along fault planes crosscutting the peridotite slab, reveal that they were developed during three superposed stress tensors: the oldest one (E1) is characterized by NW–SE sub-horizontal compression; the intermediate one consists in NE–SW to ENE–WSW extension with orthogonal compression (E2); and the youngest one (E3) shows a sub-vertical maximum stress axis and NW–SE sub-horizontal extension. During serpentinization, maximum and minimum stress axes flip between a NW–SE horizontal position and a vertical one in the whole peridotite body (E1 and E3), while E2 represents an intermediate stress stage. Field relationships and previous petrological and geochronological data indicate that serpentinization and associated stress tensors are coeval with intrusive leucogranite dikes crosscutting the peridotites, thus constraining these processes to 19–22 Ma and occurring at upper continental crust depths (P < 4 kbar). Gravity data reveal that the average density of the Ronda mantle slab (~ 2.7–2.8 g/cm3) shows a negligible contrast with the surrounding crustal rocks, thus suggesting that the peridotite body is serpentinized in a great proportion. Our preferred tectonic model to account for the evolution of the Ronda peridotites in the upper crust considers that E1 compression was linked to the collision of the Alborán continental domain with the Iberian passive margin during the Gibraltar Arc formation. Subsequently, the sudden onset of extension recorded within the peridotite slab (E2 and E3) was favored by serpentinization-driven buoyancy.  相似文献   

12.
西藏南部南迦巴瓦地区中新世-上新世地壳深熔作用   总被引:1,自引:0,他引:1  
郝光明  曾令森  赵令浩 《岩石学报》2021,37(11):3501-3512

位于喜马拉雅东构造结的南迦巴瓦地块经历了复杂的构造变形、强烈的变质和深熔作用,是研究碰撞造山过程中地壳深熔作用的重要对象。完整地厘定新生代晚期岩浆作用期次对于揭示南迦巴瓦地区的构造演化历史和深部过程具有重要意义。南迦巴瓦地块3件淡色花岗岩样品的锆石U-Pb定年结果显示该地块经历了11.30±0.16Ma和2.59±0.04Ma两期地壳深熔作用,可能与南迦巴瓦地块晚新生代快速隆升和剥蚀相关。南迦巴瓦地块保存了大量的~11Ma变质作用和地壳深熔作用记录指示该时间段为构造活动剧烈期。上新世晚期的淡色花岗岩表明,穹窿的隆升和剥蚀所导致的岩浆作用至少持续到了~2.59Ma,代表了南迦巴瓦地区一次年轻的构造岩浆事件。

  相似文献   

13.
A Rb-Sr analysis of suites of samples from a small intrusion of cordierite-bearing alkali granite into the peridotite of the Sierra Bermeja (Serrania de Ronda) yields an age of 22± 4 Ma ( = 1.42×10–11 a–1): Late Oligocene/Early Miocene. It is believed that the intrusion was derived from contact-anatectic melts produced along the hot ultramafic mass during and/or directly following its tangential, tectonic dislocation from a mantle diapir. Its age can thus be taken as dating the termination of the hot emplacement of the ultramafic masses. K-Ar dates of biotites and Rb-Sr dates of biotite/whole-rock pairs in contact-metamorphic wall rocks along the ultramafics mostly lie between 19.5 and 18.5 Ma. This probably indicates that about 19 Ma ago the contact-zones of the ultramafic masses had cooled down to the blocking temperature of biotite to Rb-Sr and K-Ar.  相似文献   

14.
A zoned kelyphite after garnet, from a garnet pyroxenite layer,the Ronda peridotite. Spain, has been studied and the mechanismof kelyphite formation is discussed. The kelyphite is an extremelyfinegrained symplectitic mixture of orthopyroxene, spinel, olivine,plagioclase, and ilmenite. It is concentrically zoned, formingthree mineralogical subzones. They are, from adjacent to a garnetgrain toward a clinopyroxene side, zone I (orthopyroxene+spinel+ plagioclase), zone II (olivine+spinel+plagioclase), and zoneIII (olivine+plagioclase). The analysis of phase equilibriashows that this mineralogical zonation can develop stably asa result of the presence of chemical potential gradients. Onthe basis of microprobe chemical analyses for each zone, materialtransfer across the zone that took place during the kelyphitizationwas quantitatively evaluated, and by locating the initial grainboundary between garnet and clinopyroxene grains and by writingmetasomatic reactions for each zone boundary, a simple dynamicmodel for the kelyphite formation is proposed. The kelyphiteformation probably took place when the host Ronda peridotiteascended from the upper mantle to the crust. It involved a co-operativebreakdown of the garnet and aluminous clinopyroxene, being accompaniedby a material transfer across the zone boundaries. By examiningthe Fe-Mg partitioning between olivine, spinel, and orthopyroxenein the kelyphite and by examining the Al content of the orthopyroxene,an attainment of local equilibrium has been confirmed, and thephysical conditions of the kelyphite formation have been estimatedto be 620–700C and 4–8 kbar.  相似文献   

15.
16.
 Field, mineralogical and petrological data are presented on a newly found carbonatite occurrence associated with “kamafugite” lava at Cupaello, central Italy. This carbonatite occurrence is part of the Late Pleistocene Umbria-Latium ultra-alkaline district (ULUD) which extends southwards within the Apennines to Mount Vulture, delineating an important magmatic province along the most peripheral belt of the Tyrrhenian extensional tectonic system. This province is distinct, but probably related genetically with the more abundant and common leucite-bearing assemblages of the Roman Comagmatic Region and represents the first reported occurrence of carbonatite assemblages in the Mediterranean Basin. The Cupaello suite indicates that primary or near-primary mantle silicate melts of “kamafugitic” composition are transitional with Ca-carbonatite liquid and provides direct evidence of immiscibility of carbonatite from “kamafugite” magma. It is inferred that a primary mantle origin of Ca-carbonatites is conditional upon a potential silicate magma that may be coupled with the carbonatite, but may not have reached the surface. The data indicate a strong genetic link between ULUD Ca-carbonatites and some African analogues, supporting the view that their genesis depends on similar source and associated tectonic conditions. Received: 17 January 1995 / Accepted: 14 June 1995  相似文献   

17.
Data are presented on the polyphase deformation and plurifacial metamorphism in the eastern part of the Betic Zone of southern Spain. An older period of polyphase deformation with roughly NW-SE fold axes is succeeded by a younger period with NE-SW to E-W axes which coincide with the present grain of the belt. Metamorphism during the older period occurred in two episodes, each consisting of a kinematic stage succeeded by a static stage. These episodes seem to be present in all of the tectonic complexes recognized in the area.Dating of the periods of deformation by means of stratigraphical methods suggests a Neogene or possibly older age for the younger period and a post-Early Jurassic-preNeogene age for the older period. Various considerations, e.g. concerning plate-tectonic origin, suggest a Mesozoic age for the latter.The fold orientations are thought to be in disagreement with the normally assumed northward direction of tectonic transport in the Betic Zone. Movements in this direction are restricted to the younger period of deformation, whereas NE-SW to E-W movements are deduced to have been of major importance during the older period of deformation which relates to the overthrust structures in the Betic Zone. It is here supposed that the original palaeogeographic zones were roughly oriented in a NW-SE direction.Between the younger and older periods, the Betic Zone is supposed to have approached the Subbetic Zone along megashears. The latter zone has not been influenced by the older period of deformation.  相似文献   

18.
Fault-slip data are used to reconstruct varying tectonic regimes associated with transverse fold development along the eastern and southern margins of the Jaca basin, southern Pyrenees, Spain. The Spanish Pyrenean foreland consists of thrust sheets and leading-edge décollement folds which developed within piggyback basins. Guara Formation limestones on the margins of the Jaca basin were deposited synchronously with deformation and are exposed in the External Sierra. Within the transverse folds, principal shortening axes determined from P and T dihedra plots of fault-slip data show a shift from steep shortening in stratigraphically older beds to NNE–SSW horizontal shortening in younger beds. Older strata are characterized by extensional faults interpreted to result from halotectonic (salt tectonics) deformation, whereas younger strata are characterized by contraction and strike-slip faults interpreted to result from thrust sheet emplacement. The interpretation of the timing for the shortening axes in the younger strata is supported by the observation that these axes are parallel to shortening axes determined from finite strain analysis, calcite twins, and regional thrusting directions determined from fault-related folds and slickenlines. This study shows that fault population analysis in syntectonic strata provides an opportunity to constrain kinematic evolution during orogeny.  相似文献   

19.
雅鲁藏布江缝合带西段东波地幔橄榄岩体钻孔岩心研究   总被引:2,自引:0,他引:2  
东波地幔橄榄岩是雅鲁藏布江缝合带内代表性超镁铁岩体,位于缝合带西段,面积超过400km2。为查明岩体成因,在岩体中实施了一口千米深的科学钻探(DSD-1)。除上部有约23m厚的第四系堆积物外,钻孔均钻进在地幔橄榄岩中,孔深1002.06m,岩心采取率96.62%。岩心编录结合显微镜下鉴定将岩心划分出44个岩性单元层,并进一步归并为上、下两套岩性:上部(23.1~340.17m)为含单辉方辉橄榄岩(斜方辉石含量为15~20%,单斜辉石含量不足5%);下部(340.17~1002.06m)为方辉橄榄岩(斜方辉石含量为10%~15%,几乎不含单斜辉石),其中发育薄层状纯橄岩和辉石岩以及辉绿岩脉。矿物学及全岩地球化学研究揭示:①东波地幔橄榄岩以方辉橄榄岩为主,其次为含单辉方辉橄榄岩,它们均具有亏损的全岩地球化学及矿物成分组成,指示它们为经历过中高程度部分熔融后的地幔残余岩石;经历过富水流体(熔体)交代作用,表现为角闪石呈柱状交代斜方辉石;②纯橄岩和辉石岩以透镜状或薄层状脉体发育于方辉橄榄岩中,具有岩浆成因的矿物组成,见交代矿物角闪石,指示它们可能为交代成因;③辉绿岩脉兼具N-MORB和弧玄武岩的化学属性,以低SiO2、高MgO和高Al2O3含量为特征,具有与Western Lau Basin玄武岩一致的REE配分型式,形成于较为成熟的弧后盆地环境。东波地幔橄榄岩(及其中的纯橄岩、辉石岩和辉绿岩脉)在成因上与俯冲带关系密切,都受到了与俯冲带相关地质作用的影响。  相似文献   

20.
New data on the petrology and structure of the Aracena metamorphic belt shows that this is a subduction-related, low-pressure/high-temperature complex developed by plate convergence at the north margin of Gondwana during the Paleozoic. The low-pressure, inverted metamorphic gradient in MORB-derived amphibolites resulted from heating from the continental hanging wall during subduction. This implies that the previous heating of the continental rocks was related to subduction of an oceanic ridge and the creation of a slab window beneath the continental margin. This slab window brought the asthenosphere in contact with the continental margin inducing a shallow thermal anomaly and partial melting of the lithospheric mantle resulting in boninite magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号