首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stable carbon isotope compositions and the stomatal parameters (stomatal density and stomatal index) of four Cheirolepidiaceae species, Brachyphyllum ningxiaensis, Brachyphyllum obtusum, Pseudofrenelopsis dalatzensis and Pseudofrenelopsis gansuensis, were analyzed to recover the late Early Cretaceous atmospheric CO2 levels. The fossil plants were collected from 5 consecutive sedimentary members of the uppermost Zhonggou Formation. Based on the stomatal data, the estimated palaeo-atmospheric CO2 concentrations in the Jiuquan Basin during the late Early Cretaceous were 1060–882 ppmv based on the carboniferous standardization and were 641–531 ppmv based on the recent standardization; the pCO2 values present at first a decreasing and then an increasing trend within the sedimentary time of the five members. The δ13Cp values based on the 21 Brachyphyllum specimens showed a large variation, which ranged from −20.98‰ to −25.69‰, with an average of −24.2‰. The values also identified a C3 photosynthetic pathway for the Brachyphyllum specimens. The predicted δ13Ca values varied from −2.1‰ to −6.38‰, with an average of −5.03‰. These two proxies were irregular within the different members; therefore, the correlation with the change in atmospheric CO2 concentrations was not significant. Moreover, a water-stressed environment was proposed based on the δ13C values of the present fossil plants, a proposal that was also supported by the previous palaeobotanical, palynological and stratigraphical evidence. In the present study, an inconsistent relationship between the stable carbon isotope and the stomata values was apparent, which most likely indicated that the stomata numbers of the plant were more sensitive to the variation in the concentration of the atmospheric CO2, whereas the δ13C values were sensitive to the moisture conditions.  相似文献   

2.
Nickel isotope ratios were measured in ores, fly ash, slags and FeNi samples from two metallurgical plants located in the Goiás State, Brazil (Barro Alto, Niquelândia). This allowed investigating the mass-dependent fractionation of Ni isotopes during the Ni-laterite ore smelting and refining. Feeding material exhibits a large range of δ60Ni values (from 0.02 ± 0.10‰ to 0.20 ± 0.05‰, n = 7), explained by the diversity of Ni-bearing phases, and the average of δ60Nifeeding materials was found equal to 0.08 ± 0.08‰ (2SD, n = 7). Both δ60Ni values of fly ash (δ60Ni = 0.07 ± 0.07‰, n = 10) and final FeNi produced (0.05 ± 0.02‰, n = 2) were not significantly different from the feeding materials ones. These values are consistent with the very high production yield of the factories. However, smelting slags present the heaviest δ60Ni values of all the smelter samples, with δ60Ni ranging from 0.11 ± 0.05‰ to 0.27 ± 0.05‰ (n = 8). Soils were also collected near and far from the Niquelândia metallurgical plant, to evaluate the potential of Ni isotopes for tracing the natural vs anthropogenic Ni in soils. The Ni isotopic composition of the non-impacted topsoils developed on ultramafic rocks ranges from −0.26 ± 0.09‰ to −0.04 ± 0.05‰ (n = 20). On the contrary, the Ni isotopic composition of the non-ultramafic topsoils, collected close to the plant, exhibit a large variation of δ60Ni, ranging from −0.19 ± 0.13‰ up to 0.10 ± 0.05‰ (n = 4). This slight but significant enrichment in heavy isotopes highlights the potential impact of smelting activity in the surrounding area, as well as the potential of Ni isotopes for discerning anthropogenic samples (heavier δ60Ni values) from natural ones (lighter δ60Ni values). However, given the global range of published δ60Ni values (from −1.03 to 2.5‰) and more particularly those associated to natural weathering of ultramafic rocks (from −0.61 to 0.32‰), the use of Ni isotopes for tracing environmental contamination from smelters will remain challenging.  相似文献   

3.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

4.
The Kaiparowits Formation contains an exceptionally rich history of tectonic, climatic, and biologic conditions within the Western Interior of North America during the Campanian. Here we reconstruct aspects of the southern Cordilleran foreland basin's paleohydrology using δ18O and δ13C values determined from unionoid bivalve shells and pedogenic carbonate nodules derived from a suite of lithofacies associations. Unionoid shells derived from fluvial deposits display average water δ18O estimates of −13.7‰ ± 2.1 (1σ) (VSMOW) and shell δ13C values of −4.0‰ ± 1.5 (VPDB), whereas pedogenic carbonate nodules display average values of −6.0‰ ± 0.5 and −8.7‰ ± 0.8, respectively. Unionoid shells derived from pond deposits fall in between the two other environments with average values of −9.5‰ ± 1.8 and −5.7‰ ± 2.1, in δ18O and δ13C values respectively. Water δ18O estimates are interpreted to represent high altitude runoff within river systems, low elevation precipitation within the basin onto floodplain soils, and varying degrees of mixing between these two components within floodplain ponds. δ13C values track the isotopic composition of dissolved inorganic carbon within river, soil, and pond waters with high values likely reflecting greater contribution from chemically weathered marine carbonates exposed in the hinterland and lower values reflecting greater contributions from the in situ degradation of plant matter. Up-section there is a shift to lower δ18O values and higher δ13C values in fluvially-derived unionoid shells that post-dates an incursion of the Western Interior Seaway, but coincides with a shift in sediment provenance, an increase in basin sedimentation rates, and a change to a more anastomosed-style channel morphology within the basin foredeep depocentre. By combining the isotopic patterns with previously published sedimentologic, climate model, and paleofloral records we find: 1) additional evidence for humid, wet, and potentially monsoonal conditions within the region, 2) support for a tectonic uplift event, potentially related to Laramide deformation, and 3) greater aggradation and overbank flooding within the alluvial system in response to the uplift event.  相似文献   

5.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

6.
The Carrancas Formation outcrops in east-central Brazil on the southern margin of the São Francisco craton where it comprises the base of the late Neoproterozoic Bambuí Group. It is overlain by the basal Ediacaran cap carbonate Sete Lagoas Formation and was for a long time considered to be glacially influenced and correlative with the glaciogenic Jequitaí Formation. New stratigraphic, isotopic and geochronologic data imply that the Carrancas Formation was instead formed by the shedding of debris from basement highs uplifted during an episode of minor continental rifting. Reddish dolostones in the upper Carrancas Formation have δ13C values ranging from +7.1 to +9.6‰, which is a unique C isotopic composition for the lowermost Bambuí Group but similar to values found in the Tijucuçu sequence, a pre-glacial unit in the Araçuaí fold belt on the eastern margin of the São Francisco craton. The stratigraphic position below basal Ediacaran cap carbonates and the highly positive δ13C values together indicate a Cryogenian interglacial age for the Carrancas Formation, with the high δ13C values representing the so-called Keele peak, which precedes the pre-Marinoan Trezona negative δ13C excursion in other well characterized Cryogenian sequences. Hence, The Carrancas Formation pre-dates de Marinoan Jequitaí Formation and represents an interval of Cryogenian stratigraphy not previously known to occur on the southern margin of São Francicso craton. Documentation of Cryogenian interglacial strata on the São Francisco craton reinforces recent revisions to the age of Bambuí Group strata and has implications for the development of the Bambuí basin.  相似文献   

7.
Stable chlorine isotopes are useful geochemical tracers in processes involving the formation and evolution of evaporitic halite. Halite and dissolved chloride in groundwater that has interacted with halite in arid non-marine basins has a δ37Cl range of 0 ± 3‰, far greater than the range for marine evaporites. Basins characterized by high positive (+1 to +3‰), near-0‰, and negative (−0.3 to −2.6‰) are documented. Halite in weathered crusts of sedimentary rocks has δ37Cl values as high as +5.6‰. Salt-excluding halophyte plants excrete salt with a δ37Cl range of −2.1 to −0.8‰. Differentiated rock chloride sources exist, e.g. in granitoid micas, but cannot provide sufficient chloride to account for the observed data. Single-pass application of known fractionating mechanisms, equilibrium salt-crystal interaction and disequilibrium diffusive transport, cannot account for the large ranges of δ37Cl. Cumulative fractionation as a result of multiple wetting-drying cycles in vadose playas that produce halite crusts can produce observed positive δ37Cl values in hundreds to thousands of cycles. Diffusive isotope fractionation as a result of multiple wetting-drying cycles operating at a spatial scale of 1–10 cm can produce high δ37Cl values in residual halite. Chloride in rainwater is subject to complex fractionation, but develops negative δ37Cl values in certain situations; such may explain halite deposits with bulk negative δ37Cl values. Future field studies will benefit from a better understanding of hydrology and rainwater chemistry, and systematic collection of data for both Cl and Br.  相似文献   

8.
Granitic magmatism in the Cachoeirinha‒Salgueiro and Alto Pajeú terranes in the Transversal Zone Domain of the Borborema Province, northeastern Brazil, occurred in three main time intervals: 650–620 Ma, 590–560 Ma and 545–520 Ma. The oldest one is characterized by intrusions of magmatic-epidote (mEp) bearing calc-alkalic (some with trondhjemitic affinities) and high-K calc-alkalic plutons, synkinematic to the main regional foliation, under contractional tectonic regime, and exhibits TDM < 2.0 Ga and ƐNd (0.6 Ga) from −1 to −4, and δ18O (zircon) values from 7.1 to 10‰VSMOW. O- and Nd-isotope data for the 650‒620 Ma group of plutons is compatible with partial fusion of subducted oceanic basaltic crust (mEp-bearing calc-alkalic tonalites/granodiorites, equivalent to adakites). Voluminous intrusions in the 590–560 Ma interval are represented by abundant mEp-free high-K calc-alkalic, peralkalic, ultrapotassic, mEp-bearing high-K calc-alkalic, and less abundant shoshonitic magmas. Nd-model ages for this group of plutons vary from 1.5 to 2.5 Ga and ƐNd (0.6 Ga) ranges from −8 to −20; δ18O (zircon) varies from 6.4 to 7.9‰VSMOW. Values of δ18O (zircon) for the 590‒560 Ma old group of plutons coupled with Nd isotope data are compatible with remelting of crustal (negative ƐNd, 1.6 to 2.0 Ga old) source rocks. O- and Nd-isotope data for this group of plutons are compatible with underplating of basaltic magma in the base of the lower crust for the high-K calc-alkalic granitoids, coeval to transcurrent movements along sigmoidal shear zones. Intrusion of one shoshonitic (Serrote do Arapuá), one calc-alkalic (Riacho do Icó) plutons besides the peralkalic Manaíra-Princeza Isabel dike set have witnessed this transition from contractional to transcurrent movements along shear zones, around 610‒600 Ma.  相似文献   

9.
The Yangla Cu deposit is the largest Cu skarn deposit in the Jinshajiang tectonic belt. Based on the detailed observation of crosscutting relationships, three mineralization stages (i.e., pre-ore, ore and supergene) have been identified in the Yangla deposit. The pre-ore stage is dominated by prograde skarn. The ore stage is characterized by the precipitation of hydrous silicate minerals, Fe-oxides, Fe-Cu-Mo-sulfides, quartz and calcite, whose mineral assemblages were formed in the early and late sub-ore stages. The early sub-ore stage is marked by retrograde alteration with the deposition of hydrous silicate minerals (e.g., actinolite, epidote and chlorite), Fe-oxides, abundant Fe-Cu-Mo-sulfides, quartz and minor calcite. Whilst, the late sub-ore stage, associated with silicic and carbonate alteration, is represented by widespread thick quartz or calcite veins with disseminated pyrite, chalcopyrite, galena and sphalerite. We present new carbon-oxygen (C-O) isotopic compositions of the ore-hosting marble and hydrothermal calcite of this deposit. The hydrothermal calcite in the Yangla deposit was precipitated from both the early and late sub-ore stages. Calcite I from the early sub-ore stage is anhedral, and occurs as spot in the skarn or locally replaces the skarn minerals. Calcite II from the late sub-ore stage is distinguished by being coarse-grained, subhedral to euhedral and its occurrence in thick veins. Calcite I contains lower δ13CPDB (−7.0‰ to −5.0‰) and δ18OSMOW (7.2‰ to 12.7‰) than Calcite II (δ13CPDB = −4.5‰ to −2.3‰; δ18OSMOW = 10.7‰ to 19.4‰). In the δ13CPDB vs. δ18OSMOW diagram, the Calcite I and Calcite II data fall close to the igneous carbonatite field and between the fields of igneous carbonatite and marine carbonates, respectively. This suggests a dominantly magmatic origin for the early sub-ore fluids, and there might have been increasing carbonate wall rock involvement towards the late sub-ore stage. The ore-hosting marble (δ13CPDB = −4.8‰ to −0.3‰; δ18OSMOW = 10.2‰ to 23.9‰) also shows a positive δ13CPDB vs. δ18OSMOW correlation, which is interpreted to reflect the decreasing alteration intensity during the interactions between the hydrothermal fluids and ore-hosting carbonates. Simulated calculation suggests that both the Calcite I and Calcite II precipitated at 350 °C to 250 °C and 250 °C to 150 °C, respectively. We proposed that CO2 degassing and water/rock interactions were likely the two major processes that precipitated the calcite and led to the observed C-O isotopic features of the Yangla Cu deposit.  相似文献   

10.
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C.  相似文献   

11.
Oceanic anoxic events are clues to ocean processes and are correlation datums. In North America only OAE 1a and 2 are well documented. Based on a low-resolution sampling program, a multi-proxy geochemical approach constrained by a biostratigraphic framework was utilized to identify OAE 1d in the upper part of the upper Albian Mesilla Valley Formation near El Paso, Texas. Chronostratigraphic and biostratigraphic evidence indicate that the OAE 1d event in the Mesilla Valley section is located in the lower part of the upper Albian–Cenomanian Ovoidinium verrucosum zone, which correlates with the uppermost Albian Parathalmanninella appenninica and Stoliczkaia dispar zones. The chronostratigraphic age of the geochemical event in the Mesilla Valley Formation is uppermost Albian (97.39–97.30 Ma).The classic geochemical signatures for OAEs are enriched total organic carbon (TOC) concentrations and coupled positive δ13C excursions. OAE 1d at this location records TOC values ranging from 0.25 to 0.69 wt.% throughout the Mesilla Valley Formation, where TOC increases during the OAE (21.0–40.0 m) to more than 0.40 wt.%. Interestingly, the organic matter in the Mesilla Valley is dominantly type III, which indicates a pervasive terrigenous source. Although marine organic matter is abundant from the base into the middle of the proposed OAE interval, it is progressively replaced by terrestrial material above the OAE section during progradation. The δ13Corganic values record a positive δ13C shift of +1.6‰ from −26.41 to −24.80‰ across the stratigraphic interval from 21.0 to 40.0 m, which correlates with OAE 1d.Mn and Fe geochemistry suggest the depositional conditions of the Mesilla Valley Formation were dominated by anoxic and possibly Fe-rich bottom waters, specifically during the time period associated with the OAE 1d event. This interpretation is supported by the presence of Fe enrichment recorded by FeTotal/Al and FeHighly Reactive/FeT with the lack of Fepyrite/FeHighly Reactive associated with Mn depletion.  相似文献   

12.
Abiotic methane in serpentinized peridotites (MSP) has implications for energy resource exploration, planetary geology, subsurface microbiology and astrobiology. Once considered a rare occurrence on Earth, reports of MSP are increasing for numerous localities worldwide in low temperature, land-based springs and seeps. We report the discovery of six methane-rich water springs and two ponds with active gas bubbling in the Ronda peridotite massif, in southern Spain. Water is hyperalkaline with typical hydrochemical features of active serpentinization (pH: 10.7 to 11.7, T: 17.1 to 21.5 °C, Ca–OH facies). Dissolved CH4 concentrations range from 0.1 to 3.2 mg/L. The methane stable C and H isotope ratios in the natural spring and bubbling sites (δ13CCH4: −12.3 to −37‰ VPDB; δ2HCH4: −280 to −333‰ VSMOW) indicate a predominant abiotic origin. In contrast, springs with manmade water systems, i.e., pipes or fountains, appear to have mixed biotic-abiotic origin (δ13CCH4: −44 to −69‰; δ2HCH4: −180 to −319‰). Radiocarbon (14C) analyses show that methane C in a natural spring is older than ca. 50,000 y BP, whereas dissolved inorganic carbon (DIC) analysed in all springs has an apparent 14C age ranging from modern to 2334 y BP. Therefore most, if not all, of the CH4 is allochthonous, i.e., not generated from the carbon in the hyperalkaline water. Methane is also released as bubbles in natural ponds and as diffuse seepages (∼101–102 mg CH4 m−2d−1) from the ground up to several tens of metres from the seeps and springs, albeit with no overt visual evidence. These data suggest that the gas follows independent migration pathways, potentially along faults or fracture systems, physically isolated from the hyperalkaline springs. Methane does not seem to be genetically related to the hyperalkaline water, which may only act as a carrier of the gas. Gas-bearing springs, vents and invisible microseepage in land-based peridotites are more common than previously thought. In addition to other geological sources, MSP is potentially a natural source of methane for the troposphere and requires more worldwide flux measurements.  相似文献   

13.
《Applied Geochemistry》1999,14(7):953-962
Isotopic compositions of C (δ13C), O (δ18O) and Sr (δ87Sr) were determined for calcite fracture fillings in the crystalline rock penetrated by a 1.6 km drill hole at Laxemar, near the Äspö Hard Rock Laboratory (ÄHRL) in southern Sweden. These calcites precipitated from groundwater some time in the past, and their δ13C, δ18O and δ87Sr values reflect those of the source waters. The present-day groundwater system is hydrochemically stratified with highly saline water underlying more shallow brackish and fresh water. The origin of this stratified system is probably related to past glaciations although the ultimate origin of the deep, highly saline water is still problematical. None of the calcite fracture fillings sampled below 900 m could have precipitated from any of the present-day ground waters which in view of the glacial history of the region is not surprising. However, several shallow calcite fracture fillings are formed by precipitation from the present-day groundwater. Coupled variations in δ13C, δ18O and δ87Sr isotopes at depths in excess of 900 m suggest that these isotope systems in calcite are recording a time-dependent evolution of groundwater composition.  相似文献   

14.
《Gondwana Research》2010,18(4):653-661
There is widespread interest in the Neoproterozoic period of the Earth's history (1000 to 542 Ma) because of unprecedented δ13C fluctuations to <  10‰ PDB through thick (> 1000 m) succession of stratigraphically complex sedimentary rocks deposited during tens of millions of years. In contrast, Phanerozoic large negative C-isotope excursions have been interpreted as the result of diagenetic fluid mixing during carbonate stabilization and burial and are less enigmatic due to the excellent biostratigraphic control on their timing and duration.The Ediacaran Nafun Group of Oman (part of the Huqf Supergroup spanning the Cryogenian–Early Cambrian) contains a large δ13C negative excursion (the Shuram excursion) reaching values as negative as − 12‰ at the base of the Shuram Formation. A steady recovery to positive values occurs over the entire Shuram and half through the overlying Buah Formation, suggesting a duration on the order of tens of My. Based on trace metal, chemostratigraphic and sedimentological analyses, the carbon isotope record obtained from the Buah Formation of northern Oman indicates a systematic and reproducible shift of δ13C values from − 6‰ to + 1‰ in 1 — a demonstrably diagenetic altered carbonate-cemented siliciclastic facies, and 2 — a least diagenetically altered stromatolitic facies. The identical reproducible isotopic pattern in these time-equivalent sections combined to the presence of exceptionally preserved δ18O values around − 2 to + 1‰ associated with the most negative δ13C values rules out isotopic resetting by diagenetic fluids as a mechanism to explain these values.It is concluded that it is possible to retain depositional δ13C values in demonstrably diagenetically altered carbonates. This raises the issue of the ability to recognize diagenetic alteration of C-isotopic values in Neoproterozoic rocks where a robust time frame to support reproducibility is not available. The results of this study provide strong support to a non diagenetic origin of the negative Shuram C-isotope excursion, believed to be the most profound (in terms of amplitude and duration) in the Earth's history.  相似文献   

15.
The early Albian Oceanic Anoxic Event (OAE), i.e., OAE1b, is well documented in western Tethys and in the primary North Atlantic Ocean, but has not yet been reported from eastern Tethys. In this paper, we present bulk carbon isotope data of hemipelagites to examine if it was recorded in eastern Tethys. Samples were taken from the upper Chuangdepu Member (nannofossil zone CC8) of the lower Gyabula (former Shadui) Formation at the Bangbu section, Qonggyai, southern Tibet of China. The δ13C values mainly range from −0.6‰ to 1.8‰ with a maximum of 1.87‰ and a minimum of −0.69‰. Three stages of carbon isotope evolution were distinguished with three boundaries. By the constraint of the stratigraphic sequence and nannofossil biostratigraphic zone CC8, the rapid δ13C change and correlation with western Tethys and Atlantic Ocean together suggest that these three boundaries of the carbon isotope evolution probably correspond to three subevents of the early Albian OAE1b, and the subevent levels of upper Kilian, Paquier, and Leenhardt are recorded in eastern Tethys (southern Tibet). The fact that the amount of δ13C shift is less by ∼1.5–2.0‰ in eastern Tethys than in western Tethys and Atlantic Ocean is interpreted as a result of possible cool sea surface (∼14–16 °C) of the southeastern Tethys (northern Indian passive margin of Greater India), which was probably located in a medium–high latitude during the Albian, leading to low primary productivity. The recognition of OAE-1b from Tethys Himalaya can improve our understanding of the Tethys and global paleoclimatic and paleoceanographic changes during the mid-Cretaceous.  相似文献   

16.
《Chemical Geology》2006,225(1-2):137-155
Carbon stable isotopes from carbonate minerals (mainly dolomite) from six wells from the Lower Triassic Sherwood Sandstones of the Corrib Gas Field, Slyne Basin, west of Ireland, allow stratigraphic correlation. The results also provide information on palaeoenvironmental change during the deposition of these continental redbed sedimentary rocks. The Triassic reservoir rocks have been buried to > 4000 m and heated to > 165 °C and now contain methane-rich gas. Although the oxygen isotopic signal has been at least partially reset during burial and heating, a primary carbon isotopic signal appears to have survived diagenesis. The carbon isotope ratio varies from − 3.2‰ to + 2.1‰. All six wells show similar stratigraphic changes when all the carbon isotope data are plotted relative to a major playa horizon. δ13C increases from about − 3‰ at the base of the Sherwood to about + 2‰ 170 m above the base. δ13C then decreases to about − 2‰ for the next 70 m and remains steady for the following 50 m. The top 20 m of the Sherwood contains carbonate with a δ13C values decreasing to about − 3‰. The occurrence of a stratigraphically-correlatable carbon isotope pattern implies that the primary evolution signal has been preserved. The change in δ13C correlates with indicators of aridity and biological stress such that the highest δ13C values are in sedimentary rocks deposited in a playa lake (arid times); these rocks contain the greatest quantity of dolomite cement. Conversely, the lowest δ13C values correspond to sedimentary rocks deposited from well-developed rivers (relatively humid times) from the lowest quantity of dolomite cement. The same carbon isotope evolution has been found in another well in the Slyne basin and in Belgium, suggesting that the palaeoenvironmental isotope signal in the Triassic sedimentary rocks of the Corrib Field may have a regional significance.  相似文献   

17.
The geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system in the northern part of the Baltic Artesian Basin (BAB) illustrates how continental glaciations have influenced groundwater systems in proglacial areas. The aquifer system contains water that has originated from various end-members: recent meteoric water, glacial meltwater and relict Na-Cl brine. The saline formation water that occupied the aquifer system prior to the glacial meltwater intrusion has been diluted by meltwaters of advancing-retreating ice sheets. The diversity in the origin of groundwater in the aquifer system is illustrated by a wide variety in δ18O values that range from −11‰ to −22.5‰. These values are mostly depleted with respect to values found in modern precipitation in the area. The chemical and isotopic composition of groundwater has been influenced by mixing between waters originating from different end-members. In addition, the freshening of a previously saline water aquifer due to glacial meltwater intrusion has initiated various types of water-rock interaction (e.g. ion exchange, carbonate mineral dissolution).  相似文献   

18.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3 from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit.  相似文献   

19.
Pb–Zn deposits are widespread and common in various parts of the Taurus Belt. Most of the deposits are of pyrometasomatic and hydrothermal origin. The Keban Pb–Zn deposits are located along the intrusive contact between the Paleozoic – Lower Triassic Keban Metamorphic Formation and the syenite porphyry of the Upper Cretaceous Keban igneous rocks. Various studies have already been carried out; using fluid inclusion studies on fluorite, calcite and quartz on the pyrite–chalcopyrite bearing Keban ore deposits. This study focuses on the interpretation of stable isotope compositions in connexion with fluid inclusion data. Sulphur isotope values (δ34S) of pyrite are within the range of ?0.59 to +0.17‰V-CDT (n = 10). Thus, the source of sulphur is considered to be magmatic, as evidenced by associated igneous rocks and δ34S values around zero“0”. Oxygen isotope values δ18O of quartz vary between +10.5 and +19.9‰(SMOW). However, δ18O and δ13C values of calcite related to re-crystallized limestone (Keban Metamorphic Formation) reach up to +27.3‰(SMOW) and +1.6‰(PDB), respectively. The δ34S, δ13C and δ18O values demonstrate that skarn-type Pb–Zn deposits formed within syeno-monzonitic rocks and calc-schist contacts could have developed at low temperatures, by mixing metamorphic and meteoric waters in the final stages of magmatism.  相似文献   

20.
The carbon isotopic composition of CO2 inclusions trapped in minerals reflects the origin and evolution of CO2-bearing fluids and melts, and records the multiple-stages carbon geodynamic cycle, as CO2 took part in various geological processes widely. However, the practical method for determination isotope composition of individual CO2 inclusion is still lacking. Developing a microanalytical technique with spatial resolution in micrometers to precisely determinate the δ13C value of individual CO2 inclusion, will make it possible to analyze a tiny portion of a zoning mineral crystal, distinguish the differences in micro-scale, and possible to find many useful information that could not be obtained with the bulk extraction and analysis techniques. In this study, we systematically collected Raman spectra of CO2 standards with different δ13C values (?34.9 ‰ to 3.58 ‰) at 32.0 °C and from ~7.0 MPa to 120.0 MPa, and developed a new procedure to precisely determinate the δ13C value of individual CO2 inclusion. We investigated the relationship among the Raman peak intensity ratio, δ13C value, and CO2 density, and established a calibration model with high accuracy (0.5 ‰?1.5 ‰), sufficient for geological application to distinguish different source of CO2 with varying δ13CO2. As a demonstration, we measured the δ13C values and the density of CO2 inclusions in the growth zones of alkali basalt-hosted corundum megacrysts from Changle, Shandong Province. We found the significant differences of density and δ13C between the CO2 inclusions in the core of corundum and those inclusions in the outer growth zones, the δ13C value decreases from core to rim with decreasing density: δ13C values are from ?7.5 ‰ to ?9.2 ‰ for the inclusions in the core, indicating the corundum core was crystallized from mantle-derived magmas; from ?13.5 ‰ to ?18.5 ‰ for CO2 inclusions in zone 1 and from ?16.5 ‰ to –22.0 ‰ for inclusions in zone 2, indicating the outer zones of corundum grew in a low δ13C value environment, resulted from an infilling of low δ13C value fluid and/or degassing of the ascending basaltic magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号