首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》1999,14(7):917-925
The origin of salinity within the Äspö groundwater system is investigated by combining interpretations of conservative dissolved ions and of stable isotope ratios in water. The interpretation concludes that the groundwater salinity results from a mixing between Baltic Sea water intrusion and a deep seated saline groundwater of marine origin. This conclusion supports the geochemical model developed for the Äspö site. The residence time of the deep salinity is assessed by comparing the 36Cl content of dissolved salt at different depths and the secular equilibrium value of the host rock. The 36Cl of deepest levels corresponding to the highest salinity, is in equilibrium with rock, suggesting a penetration of the deep salinity into the host rock more than 1.5 Ma ago.  相似文献   

2.
《Applied Geochemistry》1999,14(7):819-834
The site of the underground facility, the Äspö Hard Rock Laboratory, was excavated at a depth of 450 m below the island of Äspö and has been extensively investigated by geological, hydrogeological and hydrochemical methods as part of the geoscientific research for disposal of nuclear waste in Sweden. The geological history of the area dates back to 1.85 Ga and is dominated by granitoids belonging to the Trans-Scandinavian Igneous Belt but also includes basic sheets and xenoliths and dikes of fine-grained granite. Seven tectonic episodes, giving rise to fracture mineralization, are recognised. The major discontinuities and fracture zones were characterised from surface investigations before the tunnel construction work started. These structural features were also identified in the tunnel and are, as predicted, the major water conducting features. Sets of open fractures in the NNW–NW and N–S directions and the brittle fine-grained granite are other important water conductors. Groundwater flow modelling shows that the location of Äspö island has a major impact on the current distribution of groundwater salinity due to varying hydraulic/boundary/conditions in the late and post glacial period.  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(19-20):2919-2928
Construction of the entrance tunnel to the Äspö Hard Rock Laboratory, a prototype repository in Sweden for research into the geological disposal of spent nuclear fuel, has resulted in increased transport of organic carbon from the surface into the groundwater. This increased input of organic matter has induced accelerated oxidation of organic carbon associated with reduction of iron(III) minerals as the terminal electron acceptor in microbial respiration. Hydrochemical modeling of major solute ions at the site indicates an apparent first-order decay constant for organic carbon of 3.7 ± 2.6/yr. This rapid turnover is not accompanied by an equivalent mobilization of ferrous iron. Thermodynamic calculation of iron mineral solubility suggests that ferrous clay minerals may form in hydraulically transmissive fractures. The conditional potentials for the oxidation–reduction of such phases coincide with measured redox potentials at the site. The calculated potential is sufficiently low so that such phases would provide reducing capacity against future intrusion of O2 into the groundwater, thus buffering a repository against oxic corrosion of the engineered barriers.  相似文献   

4.
《Applied Geochemistry》1999,14(7):835-859
The overall hydrogeochemical conditions at and in the near vicinity of the underground experimental Äspö Hard Rock Laboratory (HRL) in SE Sweden have been investigated. Groundwater data from more than 400 samples have been compiled and evaluated. The groundwater samples represent depths down to 1700 m below sea level and sampling has been performed prior to and during the HRL tunnel excavation. Episodic events have to a great extent influenced the hydrochemical evolution since the last glaciation which ended some 13 ka ago. At that time glacial melt water was flushed under hydraulic pressure down into the fracture system to a depth of at least several hundred metres. The next episodic event took place when the Baltic freshwater lake transformed into the brackish Litorina Sea some 7 ka ago. At this time Äspö was covered by the sea and these denser, more saline waters partly replaced the glacial water down to a depth where the density equilibrated with the replacement sea water. At some time around 3–4 ka ago, Äspö started to rise above sea level and meteoric water began to infiltrate the rock.The overall trend of increasing salinity with depth may easily be misinterpreted as a fairly simple groundwater system, evolving from a two component evolution path between non-saline and saline groundwaters. However, when combining the results from environmental isotopes and the chemical parameters using a new modelling tool named M3 (Multivariate Mixing and Mass balance calculations), a higher resolution was obtained and a more complex groundwater pattern, which reflects the present and paleo-hydrogeological events, can be recognised.The measured groundwater composition was modelled to be a mixture of meteoric, past and present Baltic seawater, glacial (or cold climate recharge) and brine type of waters. The modelling result shows that the processes considered to have a dominating impact on the present Äspö groundwater chemistry are mixing, both in disturbed and undisturbed systems, calcite dissolution and precipitation, redox reactions and biological processes. The undisturbed groundwater conditions prior to the HRL tunnel construction at Äspö consisted of:
  • 1.A dominating proportion of meteoric fresh water in the upper 250 m of the aquifer.
  • 2.A brackish–saline water consisting of mixing proportions of present and ancient Baltic Sea water and glacial melt water present to a depth of 250–600 m.
  • 3.Saline water still containing proportions of glacial water which could represent even older glaciations, and brines, a large portion of which have been stagnant for perhaps millions of years, below a depth of 600 m.
During the HRL tunnel construction there were changes in the composition of the water flowing into the tunnel at different locations. Although the variation in salinity was relatively small, the variations in the mixing proportions of the different water types were substantial.  相似文献   

5.
Final disposal of high-level radioactive waste in deep repositories in clay formations is being considered by several countries. Repository safety assessment requires the use of numerical models of groundwater flow, solute transport and chemical processes. These models are being developed from data and knowledge gained from in situ experiments such as the CERBERUS experiment carried out at the HADES facility excavated in the Boom clay formation at Mol (Belgium). This long-term experiment is aimed at evaluating the effect of heating and radiation in Boom clay. The test was performed in a cased well drilled at 223 m depth and lasted from 1989 to 1994. A 60Co source of 400 TBq and two heaters were emplaced inside the well. Dose rate, temperature, porewater pressure and pH/Eh were measured in situ during the experiment and gas and porewater samples were taken for chemical analyses. Here a coupled thermo-hydro-geochemical (THC) model of the CERBERUS experiment is presented which accounts simultaneously for heating, radiation, solute diffusion and a suite of geochemical reactions including: aqueous complexation, acid–base, redox, mineral dissolution/precipitation, cation exchange and gas dissolution/ex-solution. Computed results indicate that heating and radiation causes a slight oxidation, a decrease in pH, slight changes in porewater chemistry and pyrite dissolution near the well. THC model results follow the general evolution of chemical data, but cannot fit SO4 data. Model discrepancies are partly overcome when microbially-mediated Fe and SO4 reduction are taken into account in a coupled thermo-hydro-bio-geochemical (THBC) model. This THBC model captures the trends of geochemical data, improves the fit to dissolved SO4 and predicts pyrite precipitation, a process observed near the CERBERUS well. The ability of the THBC numerical model to reproduce the overall trends of geochemical data of the CERBERUS experiment provides confidence in such a model as a suitable tool for the long-term prediction of geochemistry in the near field of a HLW repository in clay. However, the small number of available chemical data throughout the experiment and the lack of DOC and microbial data allow only a partial validation of the THBC model.  相似文献   

6.
李静  梁杏  毛绪美  王聪  柳富田 《地球科学》2012,37(3):612-620
地下水开采、弱透水层释水, 以及污染物迁移转化、高危废物深埋选址等水文地质和工程地质活动中, 弱透水层的作用越来越受到重视.了解弱透水层孔隙水的演化特征是认识弱透水层作用的首要问题.采用机械压榨法提取了曹妃甸地区某钻孔0~100 m粘性土孔隙水, 对孔隙水化学特征进行了分析.结果显示钻孔粘性土孔隙水呈碱性, 总溶解固体为7.26~26.89 g/L, 从浅到深逐渐减小; 陆相沉积层Cl/Br比趋向无穷大, 而海相沉积层仅为279~289.分析得出弱透水层孔隙水基本为岩层沉积水, 陆相和海相沉积层孔隙水分别显示出淡水和海水起源特征, 没有后期海水入侵影响迹象; Cl-、Na+变化趋势主要受蒸发浓缩作用影响, SO42-受硫酸盐的还原作用和石膏的溶解作用共同控制, Ca2+、Na+、K+还受到沉积过程中阳离子交换与吸附作用影响; 由δ18O重建晚更新世古气温为5.21~5.81 ℃, 浅部40 m以内计算的气温偏高是由于全新世气候变暖、孔隙水向下扩散迁移混合的影响.   相似文献   

7.
Compacted bentonite is used as sealing and buffer material in engineered barrier systems (EBS) of high-level radioactive waste repositories. The chemical characteristics of this clay and its porewater affect the migration of radionuclides eventually released from the waste. They also determine the integrity and long-term performance of the clay barriers. Key features are the structural negative charge and the large proportion of structural (interlayer) water of the main mineral montmorillonite, which leads to exclusion of anions and a surplus of cations in a large part of the porosity space. The objective of this contribution was to assess the impact of different porosity model concepts on porewater chemistry in compacted bentonite in the context of the planned Finnish spent nuclear fuel repository at Olkiluoto. First, a structural model based on well-established crystallographic and electrostatic considerations was set up to estimate the fractions of the different porosity types. In view of the uncertainty related to the chemical properties of the interlayer water, two very different model concepts (anion-free interlayer, Donnan space), together with a well-established thermodynamic model for bentonite, were applied to derive the porewater composition of the bentonite buffer at Olkiluoto. The simulations indicate very similar results in the “free” water composition for the two models and thus support the validity of the reference porewater concept commonly used in performance assessment of waste repositories. Differences between the models are evident in the composition of the water affected by the surface charge (i.e. diffuse double layer and interlayer). These reflect the conceptual uncertainty in current multi-porosity diffusion models.  相似文献   

8.
Bentonite is one of the more safety-critical components of the engineered barrier system in the disposal concepts developed for many types of radioactive waste. Bentonite is utilised because of its favourable properties which include plasticity, swelling capacity, colloid filtration, low hydraulic conductivity, high retardation of key radionuclides and stability in geological environments of relevance to waste disposal. However, bentonite is unstable under the highly alkaline conditions induced by Ordinary Portland Cement (OPC: initial porewater pH > 13) and this has driven interest in using low alkali cements (initial porewater pH9-11) as an alternative to OPC. To build a robust safety case for a repository for radioactive wastes, it is important to have supporting natural analogue data to confirm understanding of the likely long-term performance of bentonite in these lower alkali conditions. In Cyprus, the presence of natural bentonite in association with natural alkaline groundwater permits the zones of potential bentonite/alkaline water reaction to be studied as an analogy of the potential reaction between low alkali cement leachates and the bentonite buffer in the repository. Here, the results indicate that a cation diffusion front has moved some metres into the bentonite whereas the bentonite reaction front is restricted to a few millimetres into the clay. This reaction front shows minimal reaction of the bentonite (volumetrically, less than 1% of the bentonite), with production of a palygorskite secondary phase following reaction of the primary smectites over time periods of 105–106 years.  相似文献   

9.
This paper presents the different studies realized or launched by ANDRA in collaboration with different contractors, including laboratory and in situ experiments, as well as physical and numerical modelizations, related to the thermo-hydromechanical behavior of clays and clayey materials. Clays are considered as both potential host rocks and sealing materials, among other geological formations and materials, respectively.

The study of a high-level or long-lived nuclear waste disposal concept is necessarily a step-by-step procedure, with two main objectives: on one hand, ensuring a good disposal design, including feasibility of the vaults and their stability during the operating phase with the eventual continuation of the phase of waste retrievability, i.e. on a long period of time not shorter than one hundred years. On the other hand, the objective is to preserve the long-term clay properties with regard to radionuclide behavior, in particular those properties which influence their containment capacity.

Swelling clays as an engineered barrier material have been considered by ANDRA for a long time. Buffer material as an interface between the nuclear waste packages and the geological barrier and tight core of dams in drifts and shafts are the two types of constructions for which the clay conditioning and performance have been investigated. In both of these applications, the understanding of the THM behavior of the swelling clay is required. In the first case the THM load parameters are much more severe and the geochemical imbalances are of greater consequences.

R & D programmes are necessarily integrated into the design process of the disposal concept. The results will allow selection between technical solutions estimated as valuable candidates for validation within the project duration, i.e. 13 years, and those solutions which cannot be. In return the design process indicates what are the more profitable axis for the future R & D efforts.  相似文献   


10.
Several countries are preparing to dispose of radioactive nuclear waste deep underground in crystalline rock. This type of bedrock is commonly extensively fractured and consequently carries groundwater that serves as a medium for transporting metals and radionuclides. A group of metals of particular interest in this context is the rare earth elements (REEs), because they are analogues of actinides contained within radioactive waste and are tracers of hydrological pathways and geochemical processes. Concentrations of REEs are commonly low in these groundwaters, leading to values below detection limits of standard monitoring methods, particularly for the heavy REEs. We present a new technical set-up for monitoring REEs (and other trace metals) in groundwater in fractured crystalline rock. The technique consists of passing the fracture groundwater, commonly under high pressure and containing reduced chemical species, through a device that maintains the physicochemical character of the groundwater. Within the device, diffusive gradient in thin-film (DGT) discs are installed in triplicate. With this set-up, we studied REEs in groundwater in fractures at depths of approximately ?144, ?280, and ?450 m in granitoids in the Äspö Hard Rock Laboratory in southern Sweden. The entire REE suite was detected (concentrations down to 0.1 ng L?1) and was differently fractionated among the groundwaters. The shallowest groundwater, composed of dilute modern Baltic Sea water, was enriched in the heavy REEs, whereas the deeper groundwaters, dominated by old saline water, were depleted in the heavy REEs. Deployment periods varying from 1 to 4 weeks delivered similar REE concentrations, indicating stability and reproducibility of the experimental set-up. The study finds that 1 week of deployment may be enough. However, if the overall setting and construction allow for longer deployment times, 2–3 weeks will be optimal in terms of reaching reliable REE concentrations well above the detection limit while maintaining the performance of the DGT samplers.  相似文献   

11.
《Applied Geochemistry》1999,14(7):873-892
The hydrochemical response of fracture zones to enhanced recharge into the upper bedrock environment has been studied during a 3 a project at the Äspö Hard Rock Laboratory (HRL) in Southeastern Sweden. Hydrochemical data obtained during the experiment provides a basis for development of a model for the impact of accelerated recharge on groundwater composition and reactive processes during repository construction and operation. Tunnel construction at the HRL resulted in a 50-fold increase in recharge rates, and a 30-fold decrease in groundwater residence times in the fracture zone studied. Up to 80% dilution of the native groundwater created the greatest impact on groundwater composition. In addition, comparison of mass balances for solutes with known conservative behaviour, and reactive solutes, indicates a significant source of HCO3, SO2−4 and Na+ ions and a significant sink for Ca2+ ions within the fracture zone. These trends are explained by ion-exchange processes and microbial degradation of organic C transported from the soil with recharge. The increased microbial activity helps maintain anoxic conditions within the fracture zone. The enhanced recharge favours the performance of the geological barrier since anoxic conditions help to protect against corrosion of engineered barriers, and because long-lived isotopes of Np, Tc and U are less soluble under reducing conditions. A secondary impact is the strong dilution which affects trace element speciation, and also the stability and possible transport of colloids, through ion strength effects. Results from this experiment are primarily significant for national radioactive waste disposal programs that consider potential repository sites in granite geology, and for other programs considering disposal in fractured rock.  相似文献   

12.
《Applied Geochemistry》1999,14(7):939-951
Strontium isotope ratios are used to identify end-member ground-water compositions at Äspö in southeastern Sweden where the Hard Rock Laboratory (HRL) has been constructed to evaluate the suitability of crystalline rock for the geologic disposal of nuclear waste. The Hard Rock Laboratory is a decline (tunnel) constructed in 1.8 Ga-old granitic rock that forms islands in an archipelago along the Swedish coast. Ground-water samples were obtained for isotopic analyses from boreholes drilled from the surface and from side boreholes drilled within the HRL. Infiltration at Äspö occurs primarily through fractures zones in the granitic bedrock beneath thin soils throughout the area. Because of extremely low Sr concentrations, rain and snow are not important contributors to the Sr isotope budget of the ground-water system. At shallow levels, water percolating downward along fractures and fracture zones acquires a δ87Sr between +9.5 and +10.0‰ and maintains this value downward while Sr concentrations increase by two orders of magnitude. Ground-water samples from both boreholes and from in the HRL show the effects of mixing with saline waters containing as much as 59 mg/L Sr and δ87Sr values as large as +13.9‰. Baltic Sea water is a potential component of the groundwater system with δ87Sr values only slightly larger than modern marine values (+0.3‰) but with much lower concentrations (1.5 mg/L) than ocean water (8 mg/L). However, because of large Sr concentration differences between the saline groundwater (59 mg/L) and Baltic Sea water (1.5 mg/L), δ87Sr values are not particularly sensitive indicators of sea-water intrusion even though their δ87Sr values differ substantially.  相似文献   

13.
In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves that a small contribution of calcite precipitation/dissolution takes places whereas other secondary mineral precipitation or host rock mineral dissolution do not play a significant role in the geochemical signature of the studied groundwater samples. Application of the model demonstrates that it is necessary to consider the pollution history to explain the important Cl, Na and Ca concentration modifications in groundwater samples taken over 2 km downstream of waste heaps. Additionally, the model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer.  相似文献   

14.
In-situ emplacement of clay-based buffers in a nuclear fuel waste disposal vault limits the maximum attainable buffer density. This will vary with the composition of the buffer. A study of the maximum attainable densities of candidate Na bentonite/sand and illite/sand buffers is described. The addition of sand significantly increases the achievable compacted density. This increase may be obtained without any decrease in the swelling pressures developed by Na bentonite buffers. Sand decreases the shrinkage potential of the buffer and may also decrease the mass diffusion coefficient. A mixture of 50% sand and 50% clay by mass appears to optimise the physical properties of the buffer.  相似文献   

15.
《Applied Geochemistry》1999,14(7):861-871
To support and help hydrochemical evaluation a multivariate mathematical tool named M3 (Multivariate Mixing and Mass balance calculations) has been created within the Äspö Hard Rock Laboratory Research Programme. The computer code can be used to trace the origin of the groundwater and calculate the mixing portions and mass balances from ambiguous groundwater data. Groundwater composition data used traditionally to describe the reactions taking place in the bedrock can now be used to trace the effect from present and past groundwater flow with increased accuracy. The M3 model consists of the following 3 steps:
  • •Multivariate analysis, called Principal Component Analysis (PCA) is used to summarise the information from the data set. The summarised information shown in the PCA plots is used for finding relationships, patterns, extreme waters and for further M3 modelling.
  • •From the PCA plot mixing calculations are used to calculate the effect of the groundwater mixing on the obtained groundwater composition. This so-called ideal mixing model is used to calculate the mixing proportions given in %, for all the groundwater samples.
  • •The final step in M3 calculations is the mass balance calculations. Deviations from the ideal mixing model are used to trace the sources and sinks of elements, given in mg/l, which can be due to mass balance reactions.
The tested margin of error of the model is ±10% for the Äspö site data, but depends on the data to be modelled. A mixing portion of less than 10% is regarded as under the detection limit of the model and such calculations are therefore uncertain. This method can be used to trace the origin and calculate the mixing portions and effects from the reactions on the observed groundwater composition with a higher resolution and convenience compared to many standard methods.  相似文献   

16.
The physical properties of clay allow argillaceous formations to be considered geological barriers to radionuclide migration in high-level radioactive-waste isolation systems. As laboratory simulations are short term and numerical models always involve assumptions and simplifications of the natural system, natural analogues are extremely attractive surrogates for the study of long-term isolation. The clays of the Orciatico area (Tuscany, Central Italy), which were thermally altered via the intrusion of an alkali-trachyte laccolith, represent an interesting natural model of a heat source which acted on argillaceous materials. The study of this natural analogue was performed through detailed geoelectrical and soil–gas surveys to define both the geometry of the intrusive body and the gas permeability of a clay unit characterized by different degrees of thermal alteration. The results of this study show that gas permeability is increased in the clay sequences subjected to greater heat input from the emplacement of the Orciatico intrusion, despite the lack of apparent mineral and geotechnical variations. These results, which take into consideration long time periods in a natural, large-scale geological system, may have important implications for the long-term safety of underground storage of nuclear waste in clay formations.  相似文献   

17.
Containment landfills: the myth of sustainability   总被引:5,自引:0,他引:5  
A. Allen   《Engineering Geology》2001,60(1-4):3-19
A number of major problems associated with the containment approach to landfill management are highlighted. The fundamental flaw in the strategy is that dry entombment of waste inhibits its degradation, so prolonging the activity of the waste and delaying, possibly for several decades, its stabilisation to an inert state. This, coupled with uncertainties as to the long-term durability of synthetic lining systems, increases the potential, for liner failure at some stage in the future whilst the waste is still active, leading to groundwater pollution by landfill leachate. Clay liners also pose problems as the smectite components of bentonite liners are subject to chemical interaction with landfill leachate, leading to a reduction in their swelling capacity and increase in hydraulic conductivity. Thus, their ability to perform a containment role diminishes with time. More critically, if diffusion rather than advection is the dominant contaminant migration mechanism, then no liner will be completely impermeable to pollutants and the containment strategy becomes untenable.

There are other less obvious problems with the containment strategy. One is the tendency to place total reliance on artificial lining systems and pay little attention to local geological/hydrogeological conditions during selection of landfill sites. Based on the attitude that any site can be engineered for landfilling and that complete protection of groundwater can be effected by lining systems, negative geological characteristics of sites are being ignored. Furthermore, excessive costs in construction and operation of containment landfills necessitate that they are large scale operations (superdumps), with associated transfer facilities and transport costs, all of which add to overall waste management costs. Taken together with unpredictable post-closure maintenance and monitoring costs, possibly over several decades, the economics of the containment strategy becomes unsustainable. Such a high-cost, high-technology approach to landfill leachate management is generally beyond the financial and technological resources of the less wealthy nations, and places severe burdens on their economies. For instance, in third world countries with limited water resources, the need to preserve groundwater quality is paramount, so expensive containment strategies are adopted in the belief that they offer greatest protection to groundwater. A final indictment of the containment strategy is that in delaying degradation of waste, the present generations waste problems will be left for future generations to deal with.

More cost-effective landfill management strategies take advantage of the natural hydrogeological characteristics and attenuation properties of the subsurface. The ‘dilute and disperse’ strategy employs the natural sorption and ion exchange properties of clay minerals, and it has been shown that in appropriate situations it is effective in attenuating landfill leachate and preventing pollution of water resources. Operated at sites with thick clay overburden sequences, using a permeable cap to maximise rainfall infiltration and a leachate collection system to control leachate migration, ‘dilute and disperse’ is a viable leachate management strategy. Hydraulic traps are relatively common hydrogeological situations where groundwater flow is towards the landfill, so effectively suppressing outwards advective flow of leachate. This approach is also best employed with a clay liner, taking advantage of the attenuation properties of clays to combat diffusive flow of contaminants. These strategies are likely to guarantee greater protection of groundwater in the long term.  相似文献   


18.
An overview is presented of a 4-year study by the Äspö Task Force on Modelling of Groundwater Flow and Transport of Solutes, whose primary aim was to build a bridge between the approaches used for site characterisation (SC) and performance assessment (PA) associated with nuclear waste repositories. Eleven modelling teams representing six national radioactive waste organisations participated in eight modelling exercises whose objectives were: to assess simplifications used in PA models; to determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models; to support the design of SC programmes to assure that the results have optimal value for PA calculations; and to improve the understanding of site-specific flow and transport behaviour at different scales using SC models. The modelling tasks were concerned with flow and transport through single and multiple near-planar features on SC and PA timescales, including the diffusion of solutes into multiple immobile zones adjacent to fracture surfaces. In general, tracer tests provide only limited quantitative constraints on retention parameter values relevant to PA but nevertheless provide insight about the flow and transport processes, which is a key element of the bridge between SC and PA.  相似文献   

19.
20.
王露霞  梁杏  李静 《地球科学》2020,45(2):701-710
江汉平原地下水需求量日益增加、水质持续恶化,深入探究地下水的成因,对于地下水的合理利用与评价具有重要意义.选取江汉平原腹地YLW01钻孔和汉江附近HJ007钻孔为研究对象,钻探采集原状土柱,提取孔隙水,分析其水化学和氘氧同位素特征.研究表明:YLW01孔中深层砂性土孔隙水为咸水,TDS为1 131~4 013 mg/L,粘性土孔隙水为淡水;HJ007孔孔隙水均为淡水.YLW01孔中深层砂性土孔隙水的高SO42-含量(459~2 124 mg/L),由石膏溶解形成;HJ007孔中深层孔隙水的高NO3-含量(22~315 mg/L),由土壤中硝化作用形成.孔隙水化学成分主要受矿物溶解和阳离子交替吸附作用影响,在长江和汉江带作用程度不同.氘氧同位素特征表明孔隙水来源于大气降水,且汉江带浅层地下水受到明显的地表水混合.江汉平原两个钻孔水化学与同位素的差异受长江和汉江影响带河湖相沉积环境、沉积物粒度及矿物组成所控制.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号