首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive ambient concentration and flux measurements have been performed in the heavily polluted region of Cubatão/Brazil. Substantial contribution of anthropogenic sources to the local reduced sulfur burden has been observed. As a result of this atmospheric sulfur burden average gas exchange between vegetated soils and the atmosphere shows net deposition. Based mainly on own field measurements a local budget for H2S, COS, and CS2 has been made up in order to calculate anthropogenic emissions. All major sources and sinks in the chosen atmospheric reservoir (24×20×1 km) have been taken into account. Due to the small reservoir size fluxes across its boundaries are dominant sources and sinks. The differences between outflux and influx therefore account for the unknown anthropogenic emissions which have been determined to be 80±10 (H2S), 66±15 (COS), and 29±6 Mmol year-1 (CS2). Other sources and sinks like natural emissions, chemical conversion, and dry deposition turned out to be of minor importance on a local scale. In fact, inside the investigated reservoir natural emissions were below 0.5% of anthropogenic emissions. Anthropogenic emissions of H2S, COS, and CS2 quantified in this work have been compared with global emission estimates for these compounds made by other authors. We conclude that global anthropogenic emissions of reduced sulfur compounds especially of COS and CS2 are currently under-estimated.  相似文献   

2.
庞燕波  王文兴 《大气科学》1993,17(4):499-505
全球和区域大气环境研究的重要任务之一是查明各种气态物质自然源释放通量,含硫化合物是其中的一种,它在阐明生物圈硫循环和环境酸化中起重要作用.迄今为止,我国尚无有关研究报道.本文参考文献资料和实测数据用类比法进行了我国两广地区自然源硫化物释放量的计算.结果表明,天然源硫化物中主要是来自树木和土壤,释放的硫化物为COS(49%),DMS(32%)和H_2S(14%).两广地区全年自然源硫释放量3325吨(以硫计).  相似文献   

3.
Metal foil collection/flash desorption/flame photometric detection (MFC/FD/FPD) was one of the analytical methods used to measure emissions of gaseous, sulfur-containing compounds from several terrestrial natural sources during a cooperative field program in the summer of 1985. Nonspeciated, total sulfur gas emissions were determined by using the MFC/FD/FPD technique in combination with a Nafion Perma-Pure drying device to sample air from three designs of dynamic enclosure chambers. These enclosures were placed over various soil orders and vegetation in the vicinity of field sites in Iowa and Ohio previously examined during the 1977–80 SURE study of biogenic sulfur fluxes. Because of the sensitivity and detection characteristics of the MFC/FD/FPD technique, it was possible to obtain measurements on enclosure air samples that were collected for relatively short time periods,. e.g., 1 to 5 min. The magnitudes of these time-resolved, total sulfur gas emissions are correlated exponentially with internal enclosure air temperatures. Potential errors and uncertainties associated with this application of the MFC/FD/FPD methodology are assessed.The total sulfur gas flux values obtained from this study and the SURE program are compared. Unquantified sources of error in the current two parameter extrapolation model used to calculate regional and global terrestrial source strengths of biogenic sulfur emissions are also summarized and are shown to prevent a reliable estimate of overall uncertainty limits in the resultant inventory.  相似文献   

4.
基于排放因子法建立了2006-2017年安徽省人为源氨排放清单,估算人为源氨的排放水平、变化趋势及其分布特征。结果表明,安徽省2017年人为源氨排放量较高的两个地区是阜阳市和六安市,而氨排放总量最小的是马鞍山,占全省氨排放总量的1.83%。安徽省氨平均排放强度为5.34 t·km-2,其中阜阳市、淮南市及蚌埠市的排放强度均超过7 t·km-2。2006-2017年畜禽养殖源产生的氨排放量处于增加状态,尤其是肉猪、肉鸡和肉鸭的贡献分别占到畜禽源氨排放总量的34.49%~38.39%、20.31%~32.8%和10.40%~16.42%。而氮肥施用导致的氨排放量表现出先增加后下降的趋势,2017年产生的氨排放量比2013年下降了28.71 kt。生物质燃烧、人体排放和氮肥生产是非农业源氨排放的主要来源,但由机动车产生的氨的贡献呈明显增长趋势,如从2006年的1.86%增长到2017年的7.47%,这与近年来安徽省汽车保有量不断增加有关。  相似文献   

5.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   

6.
省级土地利用变化和林业(LUCF)温室气体清单主要评估“森林和其他木质生物质生物量碳储量的变化”和“森林转化温室气体排放”两类主要温室气体的排放源或吸收汇。省级LUCF温室气体清单编制方法以政府间气候变化专门委员会(IPCC)有关国家温室气体清单指南为基础,结合中国LUCF活动的实际情况,特别是在考虑核心关键数据的可获得性与可靠性的基础上制订完成。同时还建立了适用于不同省的关键排放因子和参数数据库,旨在为科学合理地编制中国省级LUCF温室气体清单提供方法学依据。  相似文献   

7.
8.
This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a global cooling in the range of –0.06 to –0.22 °C, though this effect is not found to be detectable in observed temperature trends. We then include the effects of natural forcings (volcanic aerosols, solar insolation variability and orbital changes) and other anthropogenic forcings (greenhouse gases and sulfate aerosols). Transient model runs from the year 1700 to 2000 are presented for each forcing individually as well as for combinations of forcings. We find that the UVic Model reproduces well the global temperature data when all forcings are included. These transient experiments are repeated using a dynamic vegetation model coupled interactively to the UVic Model. We find that dynamic vegetation acts as a positive feedback in the climate system for both the all-forcings and land cover change only model runs. Finally, the biogeochemical effect of land cover change is explored using a dynamically coupled inorganic ocean and terrestrial carbon cycle model. The carbon emissions from land cover change are found to enhance global temperatures by an amount that exceeds the biogeophysical cooling. The net effect of historical land cover change over this period is to increase global temperature by 0.15 °C.  相似文献   

9.
An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.  相似文献   

10.
Emissions of marine biogenic sulfur to the atmosphere of northern Europe   总被引:1,自引:0,他引:1  
Measurements of DMS and other reduced sulfur compounds in surface waters have been carried out from a helicopter in the seas surrounding Scandinavia. Average summer time concentrations of DMS ranged from 70 to 150 ngS L-1. Simultaneous measurements of biological and physical parameters revealed no correlation between DMS and phytoplankton species, species assemblages, total phytoplankton biomass, chlorophyll a, temperature, and salinity. The only exception was a correlation between DMS concentration, Chrysochromulina spp. belonging to the Prymnesiophyceae, and salinity over a narrow range of salinity in the Baltic Sea.The flux of reduced sulfur to the atmosphere in July in this region is estimated to be 120–170 gS m-2 d-1 from the Baltic, 240–810 in the Kattegat/Skagerrak, and 120–690 in the North Sea. Annual fluxes are roughly 100 times higher than these daily fluxes. On an annual basis, biogenic sulfur emissions from the coastal seas are negligible (<1%) compared to the anthropogenic emissions in northern Europe. However, during the summer months, the biogenic sulfur emissions from the seas surrounding the Scandinavian peninsula are estimated to be as high as 20–70% of the anthropogenic emissions in Scandinavia. This makes it of interest to incorporate the biogenic emissions in calculations of long-range transport and deposition of sulfur within the region.Other volatile sulfur species, mainly methyl mercaptan, contribute about 10% of the total flux of reduced sulfur. Estimated fluxes of CS2 to the atmosphere ranged from 1 gS m-2 d-1 in the Baltic Sea to 6 gS m-2 d-1 in the North Sea. No emissions for H2S or COS were detected.  相似文献   

11.
There are many indicators that human activity may change climate conditions all around the globe through emissions of greenhouse gases. In addition, aerosol particles are emitted from various natural and anthropogenic sources. One important source of aerosols arises from biomass burning, particularly in low latitudes where shifting cultivation and land degradation lead to enhanced aerosol burden. In this study the counteracting effects of greenhouse gases and aerosols on African climate are compared using climate model experiments with fully interactive aerosols from different sources. The consideration of aerosol emissions induces a remarkable decrease in short-wave solar irradiation near the surface, especially in winter and autumn in tropical West Africa and the Congo Basin where biomass burning is mainly prevailing. This directly leads to a modification of the surface energy budget with reduced sensible heat fluxes. As a consequence, temperature decreases, compensating the strong warming signal due to enhanced trace gas concentrations. While precipitation in tropical Africa is less sensitive to the greenhouse warming, it tends to decrease, if the effect of aerosols from biomass burning is taken into account. This is partly due to the local impact of enhanced aerosol burden and partly to modifications of the large-scale monsoon circulation in the lower troposphere, usually lagging behind the season with maximum aerosol emissions. In the model equilibrium experiments, the greenhouse gas impact on temperature stands out from internal variability at various time scales from daily to decadaland the same holds for precipitation under the additional aerosol forcing. Greenhouse gases and aerosols exhibit an opposite effect on daily temperature extremes, resulting in an compensation of the individual responses under the combined forcing. In terms of precipitation, daily extreme events tend to be reduced under aerosol forcing, particularly over the tropical Atlantic and the Congo basin. These results suggest that the simulation of the multiple aerosol effects from anthropogenic sources represents an important factor in tropical climate change, hence, requiring more attention in climate modelling attempts.  相似文献   

12.
温室气体和硫酸盐气溶胶的辐射强迫作用   总被引:9,自引:4,他引:5  
对GOALS4 .0海 陆 气耦合模式的相关部分进行了改进 ,主要改进包括温室气体的扩充和硫酸盐气溶胶“显式”方案的引入 ,并引入 2 0世纪温室气体的实际浓度变化以及硫循环模式模拟的硫酸盐气溶胶的三维全球浓度分布 ,模拟了温室气体和硫酸盐气溶胶造成的辐射强迫的空间分布和时间变化。全球平均的温室气体和硫酸盐气溶胶的辐射强迫分别为 2 .17W /m2 和 - 0 .2 9W /m2 ;温室气体造成的辐射强迫在空间上呈现明显的纬向结构 ,最大值 (大于 2 .5W/m2 )和最小值 (小于 1W /m2 )分别位于副热带和两极地区 ,在北半球主要工业区硫酸盐气溶胶的辐射强迫绝对值接近温室气体的辐射强迫值 (大于 - 2 .0W /m2 )。  相似文献   

13.
Anthropogenic emissions of methane (CH4) and nitrous oxide (N2O) from livestock agriculture (enteric fermentation, animal waste management systems, and pasture manure) and plant growing of the Russia (CH4 emissions from rice fields, direct and indirect N2O emissions from agricultural lands) are considered. In 2004, the total emissions of these greenhouse gases in the agricultural sector amounted to 1.4 × 105 thousand t CO2-equivalent, which corresponds to 45% of the 1990 level (3.1 × 105 thousand t CO2-equivalent). In 2004, the contribution of N2O to the total agricultural emissions was approximately twice (67.0%) that of CH4 (33.0%). Direct N2O emissions from agricultural soils (0.5 × 105 thousand t CO2-equivalent) and CH4 emissions from the internal fermentation of domestic animals (0.4 × 105 thousand t CO2-equivalent) are the most significant sources in the agricultural sector of the Russian Federation. In 2004, all these agricultural sources emitting methane and nitrous oxide contributed about 7% CO2-equivalent to the total emission of the anthropogenic greenhouse gases in Russia.  相似文献   

14.
Developed regions of the world represent a major atmospheric methane(CH_4) source, but these regional emissions remain poorly constrained. The Yangtze River Delta(YRD) region of China is densely populated(about 16% of China's total population) and consists of large anthropogenic and natural CH_4 sources. Here, atmospheric CH_4 concentrations measured at a 70-m tall tower in the YRD are combined with a scale factor Bayesian inverse(SFBI) modeling approach to constrain seasonal variations in CH_4 emissions. Results indicate that in 2018 agricultural soils(AGS, rice production) were the main driver of seasonal variability in atmospheric CH_4 concentration. There was an underestimation of emissions from AGS in the a priori inventories(EDGAR—Emissions Database for Global Atmospheric Research v432 or v50), especially during the growing seasons. Posteriori CH_4 emissions from AGS accounted for 39%(4.58 Tg, EDGAR v432) to 47%(5.21 Tg, EDGAR v50) of the total CH_4 emissions. The posteriori natural emissions(including wetlands and water bodies) were1.21 Tg and 1.06 Tg, accounting for 10.1%(EDGAR v432) and 9.5%(EDGAR v50) of total emissions in the YRD in2018. Results show that the dominant factor for seasonal variations in atmospheric concentration in the YRD was AGS,followed by natural sources. In summer, AGS contributed 42%(EDGAR v432) to 64%(EDGAR v50) of the CH_4 concentration enhancement while natural sources only contributed about 10%(EDGAR v50) to 15%(EDGAR v432). In addition, the newer version of the EDGAR product(EDGAR v50) provided more reasonable seasonal distribution of CH_4 emissions from rice cultivation than the old version(EDGAR v432).  相似文献   

15.
A simple methane model is presented in which lifetime changes are expressed as a function of CH4 concentration and emissions of NOx CO and NMHCs. The model parameters define the relative sensitivities of lifetime to these determining factors. The parameterized model is fitted to results from five more complex atmospheric chemistry models and to 1990 IPCC concentration projections. The IPCC data and four of the five models are well fitted, implying that the models have similar relative sensitivities. However, overall sensitivities of lifetime to changes in atmospheric composition vary widely from model to model. The parameterized model is used to estimate the history of past methane emissions, lifetime changes and OH variations, with estimates of uncertainties. The pre-industrial lifetime is estimated to be 15–34% lower than today. This implies that 23–55% of past concentration changes are due to lifetime changes. Pre-industrial emissions are found to be much higher (220–330 TgCH4/y) than the best estimate of present natural emissions (155 TgCH4/y). The change in emissions since pre-industrial times is estimated to lie in the range 160–260 TgCH4/y, compared with the current best guess for anthropogenic emissions of 360 TgCH4/y. These results imply either that current estimates of anthropogenic emissions are too high and/or that there have been large changes in natural emissions. 1992 IPCC emissions scenarios are used to give projections of future concentration and lifetime changes, together with their uncertainties. For any given emissions scenario, these uncertainties are large. In terms of future radiative forcing and global-mean temperature changes over 1990–2100 they correspond to uncertainties of at least ±0.2 Wm–2 and ± 0.1° C, respectively.  相似文献   

16.
A total of 59 rainwater samples were collected during the winter and monsoon (1991–92) at Dayalbagh, Agra. This site is relatively free from the influence of anthropogenic emissions and the volume-weighted average concentrations (VWA) of formate in the winter and monsoon were 22.5±6, 16.1±3 while acetate VWAs were 17.1±5 and 13.8±3 mol l-1, respectively. Although the VWAs varied between seasons, it was not statistically different. Total deposition (in mmol m-2) varied between season (winter formate, 1.4; acetate, 1.1; monsoon formate, 7.4; acetate, 6.4). A difference in VWA values may have occurred as a result of the dilution factor; the total rain depth from collected samples in the monsoon was 46 cm while that in winter was 6.3 cm. Sources at this site may be anthropogenic and natural; scavenging from the vapour phase, washout of soil particles and emissions from vegetative sources are probably important sources for formate and acetate.  相似文献   

17.
Min WEI 《大气科学进展》2005,22(6):798-806
The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand and predict climate variability and climate change not only in Asia but also globally. In order to diagnose the impacts of future anthropogenic emissions on monsoon climates, a coupled general circulation model of the atmosphere and the ocean has been used at the Max-Planck-Institute for Meteorology. In addition to carbon dioxide, the major well mixed greenhouse gases such as methane, nitrous oxide, several chlorofluorocarbons, and CFC substitute gases are prescribed as a function of time. The sulfur cycle is simulated interactively, and both the direct aerosol effect and the indirect cloud albedo effect are considered. Furthermore, changes in tropospheric ozone have been pre-calculated with a chemical transport model and prescribed as a function of time and space in the climate simulations. Concentrations of greenhouse gases and anthropogenic emissions of sulfur dioxide are prescribed according to observations (1860-1990) and projected into the future (1990-2100) according to the Scenarios A2 and B2 in Special Report on Emissions Scenarios (SRES, Nakcenovic et al., 2000) developed by the Intergovernmental Panel on Climate Change (IPCC). It is found that the Indian summer monsoon is enhanced in the scenarios in terms of both mean precipitation and interannual variability. An increase in precipitation is simulated for northern China but a decrease for the southern part. Furthermore, the simulated future increase in monsoon variability seems to be linked to enhanced ENSO variability towards the end of the scenario integrations.  相似文献   

18.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO x . This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO x emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO x and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO x emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations.  相似文献   

19.
This study provides estimates of greenhouse gas emissions from the major anthropogenic sources for 142 countries. The data compilation is comprehensive in approach, including emissions from CO, CH4, and N2O, and ten halocarbons, in addition to CO2. The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature.  相似文献   

20.
Estimation of anthropogenic heat emission in the Gyeong-In region of Korea   总被引:1,自引:0,他引:1  
The anthropogenic heat emission in the Gyeong-In region of Korea in 2002 is estimated based on the energy consumption statistics data. The energy consumption over the region is categorized into four energy sectors: electricity use, transportation, point sources, and area sources. The estimated annual mean anthropogenic heat emissions in Seoul, Incheon, and Gyeonggi are found to be 55, 53, and 28 W m?2, respectively. A major contributing energy sector to anthropogenic heat emission in the Gyeong-In region is area sources including the residential, commercial, and small industrial sectors, which account for 40% of the total heat emission from the three administrative districts, and transportation and electricity use follow. The distributions of the annual, monthly, and hourly mean anthropogenic heat emission for all energy sectors are presented in the 0.01° longitude × 0.01° latitude grid domain. The presently estimated anthropogenic heat emission data can be used in mesoscale meteorological and environmental modeling in the Gyeong-In region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号