首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
对东海中陆架泥质区及其周边的表层沉积物分别利用容量法、元素分析仪法进行了IC、OC含量分析,利用筛析法和沉降法进行了粒度分析。结果表明,研究区IC含量均明显高于OC含量。OC含量在泥质区高,砂质区低;IC含量分布为:近岸细粒沉积区为相对高值区,中陆架砂质区为低值区,中陆架泥质区为高值区,外陆架砂质区为特高值区.OC富集主要受控于上覆水体的生物生产量、沉积动力环境以及海底物理化学条件。IC的分布受物  相似文献   

2.
P. Lesueur  J. P. Tastet 《Marine Geology》1994,120(3-4):267-290
Seventy cores from the Aquitaine continental shelf were examined using radiographic and grain-size techniques in order to describe the sedimentary structures of the muddy deposits, and to evaluate their depositional processes. Four lithofacies are identified in this fine-grained deposit: (a) homogeneous silty sand, (b) interbedded homogeneous mud and sand, (c) silty-clayey mud, and (d) mottled mud. They show a logical pattern in relationship to the water depth and the distance from the coast.

Primary structures are present particularly in the landward and central portion of the mud fields, where the sediment is organized into sequences with a sharp-based erosional contact, overlain by a fining-up succession (centimetre to decimetre scale). The beginning of each of these is characteristic of a high-energy storm event, which is common on this shelf. The settling of suspended fine sediment corresponds to the flood estuarine discharge during quiet periods. Primary sedimentary structures decrease in the distal area where the muddy sediment is frequently reworked by infauna. Finally, primary structures and their preservation depend on the relative magnitudes of surface waves, storms, infaunal mixing and fluvial sediment deposition rates (i.e. floods).  相似文献   


3.
东海陆架中北部沉积物粒度特征及其沉积环境   总被引:4,自引:1,他引:3  
通过对东海陆架表层沉积物粒级组成、粒度参数、14C年龄和微体古生物组合的综合分析,绘制了东海陆架的沉积物类型分布图;运用Folk等(1970)沉积物分类方法将东海表层沉积物分成砂、粉砂、粉砂质砂、砂质粉砂、砂质泥5种类型,其中粉砂质砂分布最广,砂质泥分布最少;沉积物由陆向海粒度变粗,反映沉积过程中的物源和沉积动力控制作用。根据沉积环境及成因分析,可将东海陆架沉积分为3类:分别是长江口外席状砂沉积区、现代泥质沉积区和陆架中部砂质沉积区。长江口外砂质沉积是全新世冰消期晚期潮流作用及风暴潮流共同作用的产物,是高海平面以来太平洋潮波系统作用下的潮流沙沉积,沙波地貌仍在发生变化。现代泥质沉积区包括长江前三角洲沉积、浙闽沿岸流沉积和济州岛西南泥质沉积三个区域,不同沉积区的成因机制不同。陆架中部砂质沉积是末次冰盛期之后海侵作用下发育的砂质沉积物,在海侵的不同阶段中沉积物被冲刷改造,具有不等时性特征,沉积环境与现代陆架海洋环流的动力特征不一致,现代沉积作用较弱,仅接受悬浮体细粒沉积。  相似文献   

4.
The Galicia-Minho Shelf features two large mud patches, the Douro and the Galicia Mud patches. These are recent sediment bodies that have accumulated under a combination of conditions including: (1) abundant supplies of sediment; (2) morphological barriers that act as sediment traps; and (3) hydrographic conditions that favour the accumulation of fine sediment in these sinks. This paper describes the mechanisms controlling the deposition of the fine-grained sediment depositions and the processes that result in resuspension processes on the Galicia-Minho Shelf.Fine-grained sediments are provided from discharges from the river basins on the southern sector of the shelf, mainly the Douro and Minho rivers. Sediments are exported from river estuaries onto the shelf during episodic flood events. In contrast, most of the sediments originating from the Galician hinterland fail to contribute significantly to sedimentation on the shelf, because they are retained in the Galician Rías, which function as sediment traps.Sediments deposited on the shelf are frequently remobilized, particularly during southwesterly storms that coincide with downwelling conditions. Once in suspension the fine-grained sediments are transported northwards by the poleward flowing bottom currents and are eventually deposited on the Douro and Galicia Mud patches after a series of resuspension events. The locations of the two mud patches are strongly influenced by the shelf morphology.Fines already deposited on the mud patches are occasionally reintroduced into the system by large storm events. Some material from the Douro Mud patch and adjacent areas is re-deposited in the Galicia Mud patch. It is probable that sediments re-suspended from the Galicia Mud patch are carried off the shelf when storm events coincide with downwelling conditions.  相似文献   

5.
东海内陆架泥质沉积体研究进展   总被引:4,自引:0,他引:4  
陆架海现代泥质沉积研究具有重要的地质学、环境科学和气候学意义,数十年来一直受到海洋科学家的关注,尤其是近年来在我国兴起了一股研究陆架泥质沉积体的热潮,取得一大批重要成果。本文对我国最大的东海内陆架泥质沉积体的研究进展进行回顾,作为典型区域呈献给读者。东海内陆架泥质沉积区从长江口水下三角洲向南,沿闽浙近岸浅海一直延伸到台湾海峡中部,全长800km,宽约100km,面积约80000km2,相当于两个台湾岛的大小,实属我国乃至亚洲浅海规模最大(体积排第二)的楔式泥质沉积体和现代沉积区。该区中晚全新世沉积地层厚度较大,局部厚达40—80m,总体上呈近岸厚、向海方向逐渐变薄,一般在50—60m等深线、局部可达75m甚至90m等深线附近尖灭。该区泥质沉积物粒度较细,主要由黏土和粉砂组成(大于90%),砂含量很低(小于10%),黏土和粉砂含量在泥质沉积区外缘急剧降低,而砂含量突然增加。沉积物类型为粉砂质黏土和黏土质粉砂,外侧与黏土-粉砂-砂(混合沉积)或泥质砂为界。粒度分布南北有一定差异,北段(长江口外至瓯江口外)近岸较粗外侧较细,近岸为黏土质粉砂,外侧为粉砂质黏土;而南段(自瓯江口至台湾海峡北部)则相反;深入台湾海峡中部的远端泥质沉积也较粗,为黏土质粉砂。现代沉积速率从长江口水下三角洲至闽浙沿岸近海以及从近岸向外陆架方向逐渐降低,与地层厚度分布相一致。悬浮体浓度空间分布,尤其是冬季悬浮体的分布与沉积速率的分布基本一致,表明沉积物是从长江口沿闽浙近海向南和从近岸向海输运的。矿物、化学和环境磁学指标等均显示沉积物主要来自长江,老黄河对该区北部,台湾物质对南部有一定影响,闽浙沿岸河流在局部也有少量贡献。该泥质沉积体的形成与全新世中期约7.3ka BP以来持续高海面及相应的总体沉积动力过程密切相关,主要包括闽浙沿岸流将长江物质源源不断地向南输送和沉积过程、台湾暖流、上升流在其外侧的阻挡作用,以及下降流和穿刺锋的横向输运等动力控制因素。沉积物输运主要发生在冬季,冬季风导致海洋动力加强的作用功不可没,热带气旋-台风风暴对泥质体起到了一定助长与破坏的双重作用。由于该泥质沉积体的形成与季风和沿岸流的密切关系,在形成过程中打上了气候环境的烙印,是冬季风和夏季风演化记录的良好载体,近年来的研究成果很好地揭示了中晚全新世以来千年、百年、十年尺度甚至更高分辨率的气候演化历史及气候突变事件。该泥质沉积区对人类活动的响应也较敏感,自3.0ka BP以来对长江流域燃火变化以及历史上中国人口的几次大迁徙均显现在沉积记录中,特别是对近几十年,尤其是三峡水库蓄水以来,长江来沙的变化也有明显的响应。未来的研究需要进一步澄清泥质体形成发育过程不同阶段中长江、黄河、台湾、闽浙河流物质以及残留区物质的定量贡献及时空差异;深入了解人类活动的响应及环境记录研究;加强现代沉积动力过程的观测和精细的数值模拟研究,揭示泥质积区动力背景的空间差异性,这不仅是深化泥质沉积形成机制的需要,也可为古环境恢复提供科学支撑。  相似文献   

6.
Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that:(1) In recent years(2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006;(2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area;(3) In 2004-2007, the sand-silt boundary in the north part(31°30′N) of the continental shelf area presented no significant changes, while that in the south part(31°30′S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu;(4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.  相似文献   

7.
《Marine Geology》2005,216(4):239-247
The Ayeyarwady continental shelf is a complex sedimentary system characterized by large sediment influx (> 360 million ton/yr), a wide shelf (> 170 km), a strong tidal regime (7 m maximum tidal range), and incised by the Martaban Canyon. Grain size distribution on the Ayeyarwady shelf reveals three distinct areas in terms of sediment texture (i) a near-shore mud belt in the Gulf of Martaban and adjacent inner shelf (ii) outer shelf relict sands and (iii) mixed sediments with varying proportions of relict sand and modern mud in the Martaban Canyon. The bulk of the terrigenous sediment discharged by the Ayeyarwady River is displaced eastwards by a combination of tidal currents and clockwise flowing SW monsoon current and deposited in the Gulf of Martaban resulting in shoaling of its water depths. Part of the sediment discharge reaches the deep Andaman Sea via the Martaban Canyon and the rest is transported westward into the Bay of Bengal by the counter-clockwise flowing NE monsoon currents.  相似文献   

8.
Sediment distribution patterns on the Galicia-Minho continental shelf   总被引:1,自引:0,他引:1  
A sedimentological and bathymetric study of the Minho-Galicia Shelf shows a strong contrast between a southern shelf region with a thin partially relict cover of sands and gravel, and a northern region where fine-grained sediments predominate. This contrast is explained through differences in the sediment supply, the oceanographic environment (storms and ocean currents) and the morphology of the shelf which results from its underlying tectonic framework.Most sediment is supplied to the Galicia-Minho Shelf by river discharges onto the Minho Shelf, particularly that from the Douro River. In the northern part of the shelf the Galician Rías act as sediment traps rather than sediment suppliers. The bulk of the sediment washes out of the rivers during episodic storm events. While most of the coarse sediments remain deposited close to the coast, the fine-grained material is exported to the outer areas of the shelf. Subsequently, coarse sediments close to the coast are transported southwards by the littoral drift. Whereas the fine-grained material is frequently resuspended through the action of the large swells who influence reaches deep into the water. This frequent resuspension has a long-term sorting effect on the sediments. Furthermore, resuspended sediments on the middle and outer regions of the shelf are transported northwards by a poleward flowing bottom current.As a consequence of the differential transport of coarse sediments to the south, and of the fine-grained sediments to the north, the outer reaches of the Minho Shelf are relatively poor in recent sediments. In many areas relict sediments as well as features associated with ancient coastlines and river mouths, still appear as seabed features. In contrast, the northern regions of the shelf are covered by a thin veneer of fine-grained material that smooth other most of these fossil features.The fine-grained sediment fractions (mostly very fine sands to coarse silts) are deposited in two large mud patches, the Douro and the Galicia Mud Patches, which are situated at water depths of around 100–120 m. These two mud patches are both controlled by the local hydrodynamics and morphology. The Beiral de Viana, to the west of the Douro Mud Patch is a plateau, up to 20 m high lying parallel to the shelf-break and is a morphological expression of an underlying horst system. This plateau acts as a barrier that prevents the drift of some of the fine-grained material to the west, out over the shelf-break and the continental slope. The Galicia Mud Patch is situated on the eastern part of the Galician Shelf to the north of the Douro Mud Patch. It is situated near the extension of the Porto–Tomar fault, which results in the shelf being usually steep in this region, down to a depth of about 100 m. West of this area the slope is much more gentle. Northward transport of the sediment is strongly reduced by the E–W trending outcrops of plutonic and metamorphic rocks.  相似文献   

9.
Sedimentological, geochemical, and physical-oceanographic studies of the Brazilian continental shelf near the Amazon River help provide a broad understanding of this major sediment dispersal system. Amazon River sediment accumulates as a subaqueous delta, with the most rapid accumulation (10 cm/yr) occurring near the seaward edge of the topset beds and in the foreset beds. Amazon River sediment is dispersed northwestward along the shelf and is transported beyond the Brazilian border. Radiographic studies of sediment cores delineate three sedimentary environments: interbedded mud and sand, faintly laminated mud, and bioturbated mud. The distribution of these environments is a function of proximity to the river mouth and of sediment accumulation rate.  相似文献   

10.
东海不同底质类型海域春季悬浮体通量及影响因素   总被引:7,自引:2,他引:7  
利用1994年4月在东海陆架不同底质类型海域即泥质和砂质区的水文和泥沙观测资料,分析和计算了两个站的悬浮体含量的分布、余流分布和悬浮体通量,以代表两个局部海域悬浮体含量分布和输送的特征。结果表明,在底质类型、生物活动、水动力环境和悬浮体物源各因素的影响下,两个海域的悬浮体通量和悬浮体含量垂直分布各有其特征,是东海悬浮体输送和垂直分布的两种典型类型。111站周围海域的悬浮体通量较大,上、中层水体(0-40m)中的悬浮体向东南方向输送,下层和底层的悬浮体向东北方向输送,且下层和底层的通量大于中上层;砂质区的悬浮体通量相对较小,且从表层到底层均向东北方向运移。  相似文献   

11.
The December 1, 1974 northeaster was a significant event in terms of sediment transport with 20 m3 of sand per meter of dune breach being carried onto the backdune area of Assateague Island, Maryland as overwash. Previous investigators have reported larger transport rates for landfall hurricanes, but this is the largest amount recorded for a winter northeaster. The Ash Wednesday Storm, March 6–8, 1962, was a much larger event, but no quantitative data exists for overwash deposition.The resulting sedimentary deposit can be interpreted by defining sedimentation units. Inverse sediment grading was predominant, but normal grading occurred when the material was monomineralic and the unit totally depositional in nature. The timing of the storm surge was recorded in some sections as a distinctive heavy mineral enrichment in the sediment.  相似文献   

12.
受限于海洋动力条件的复杂性,基于陆架泥质沉积重建的古气候或古环境一直存在争议。为此,本文在北黄海地区沿沉积物输运路径采集3根柱样,通过沉积物粒度及其端元组分和基于器测数据的东亚冬季风指数和黄海暖流强度,分析了不同泥区沉积物粒度端元组分对冬季风暴和黄海暖流变化的响应机理和强度,揭示了上述变化在不同区域产生的沉积效应。结果表明,近百年以来黄河远端泥北支的沉积物组分变化受到了自然因素和人类活动的共同影响。1980年以后,人类活动对黄河沉积物入海通量及其组成的影响开始增强,并掩盖了自然演化信息。而1980年以前,不同泥区的不同端元组分对冬季风暴和黄海暖流的响应机理和强度存在差异,具有显著的区域沉积效应:粗端元组分受冬季风暴强度变化主导,能够反映山东半岛北岸跨锋面物质输运强度的变化;细端元组分受到黄海暖流强度变化主导,反映沉积物从北黄海西部泥区到辽东半岛东岸泥区的输运过程。上述结论说明,虽然粒度是表征古气候和古环境变化的重要标志物,但应根据不同泥区沉积物来源和沉积动力环境的特点,谨慎选择敏感端元组分,正确地使用粒度指标。  相似文献   

13.
The continental-shelf morphology is dominated by glacial erosion and deposition. Erosion is prominent on the near-shore shelf and deposition along the outer shelf edge. The continental slope is characterized by delta-shaped progradations (glaciomarine-sediment fans) seaward of the shelf channels. Canyons cross the continental slope only in the region southeast of Cape Farewell. The continental rise is incised by a number of submarine canyons. Broad sediment ridges on the upper continental rise are probably canyon-eroded remains of extensive Plio-Pleistocene fans. A mid-ocean channel which crosses the continental rise is possibly related to the axis of maximum depth of Denmark Strait. Despite the presence of strong bottom currents, there is no indication of depositional sediment drifts along the continental margin of Greenland between Cape Farewell and Denmark Strait. This may be a function of high current velocity or low sediment load.Sea floor older than 60 m.y. B.P. is present just seaward of the Greenland continental margin implying either downwarped continental material or an early rift formed prior to the separation of Greenland from the European plate. A left lateral offset of anomalies 20 and 21 at 65°N indicates a major fracture zone related to the Greenland continental margin offset nearby.  相似文献   

14.
The riverine mud that escapes retention in the estuaries and enters the Gulf of Papua appears to be transported southeastward, across depth contours, by the prevailing currents in a series of wind-driven events. The mud deposits to the southeast of the rivers, at the mid-shelf region within a depth range of 40–60 m. Mud transported farther eastward is carried down the continental rise. Coarser riverine sediment (silt and sand) is deposited closer inshore. On the outer shelf (depth >60 m) relict carbonate debris dominates. The area of mud has maximum rates of pelagic and benthic productivity in the gulf.  相似文献   

15.
This study used non-invasive pulse-amplitude modulated (PAM) fluorometry to measure the maximum fluorescence yield (F(v)/F(m)) of two Hawaiian scleractinian coral species exposed to short-term sedimentation stress. Beach sand or harbor mud was applied to coral fragments in a flow-through aquarium system for 0-45 h, and changes in F(v)/F(m) were measured as a function of sediment type and length of exposure. Corals were monitored for up to 90 h to document recovery after sediment removal. Sediment deposition significantly decreased F(v)/F(m) in both species and was a function of sediment type and time. Corals that received sediment for 30 h or more had the greatest reduction in yield and exhibited little recovery over the course of the experiment. Harbor mud caused a greater reduction in Porites lobata yield than beach sand, whereas both sediment types had equally deleterious effects on Montipora capitata. Colony morphology and sediment type were important factors in determining yield reduction--P. lobata minimized damage from coarse sand grains by passive sediment rejection or accumulation in depressions in the skeleton, and fluorescence yield decreased most in corals exposed to sticky harbor mud or in colonies with flattened morphologies. Species-specific differences could not be tested due to differences in colony morphology and surface area.  相似文献   

16.
An open ocean shoreface typical of long, wave-dominated sandy coasts has been examined through a combination of extensive field measurements of wave and current patterns with computations of marine bedload transport and sedimentation. Sand transport on the upper shoreface is dominantly controlled by waves with only secondary transport by currents. Sand on the middle and lower shoreface, as well as the inner continental shelf is entrained by storm waves and transported by a complex pattern of bottom boundary layer currents.

Storm events have been studied and modeled for the shoreface off Tiana Beach, Long Island. The dominant effect of coastal frontal storms is to cause significant shore-parallel bedload transport with important shore-normal secondary components. These storms tend to result in net offshore transport of sand removed from the beach and surf zone systems. The bedload transport during a storm is convergent on the shoreface leading to accretion. Most accretion occurs on the upper shoreface with lesser deposits covering the middle and lower shoreface as well as the inner continental shelf. Longer-term equilibrium can be maintained by slow return of sand up the shoreface during non-storm conditions.

Annual and geologic time-scale budgets of shoreface sand transport and sedimentation yield equilibrium, net accretion or net deposition. The annual balance results from an integration of the event-scale bedload transport patterns and morphologic responses. These processes and responses have feedback mechanisms which stabilize the system over longer, but not geologic, time scales. Geologic time scale balances are controlled by relative sea level changes and relative availability of sediment supply with the event-scale shoreface and transporting processes providing the mechanism to produce the changes in long-term morphology and sedimentation patterns. In the area of study, the long-term pattern is one of net shoreface erosion, and the permanent loss of sand to the shelf floor.  相似文献   


17.
《Ocean Modelling》2011,36(4):314-331
Hurricane-induced storm surge, waves, and coastal inundation in the northeastern Gulf of Mexico region during Hurricane Ivan in 2004 are simulated using a fine grid coastal surge model CH3D (Curvilinear-grid Hydrodynamics in 3D) coupled to a coastal wave model SWAN, with open boundary conditions provided by a basin-scale surge model ADCIRC (Advanced CIRCulation) and a basin-scale wave model WW3 (WaveWatch-III). The H1wind, a reanalysis 10-m wind produced by the NOAA/AOML Hurricane Research Division (HRD), and a relatively simple analytical wind model are used, incorporating the effect of land dissipation on hurricane wind. Detailed comparison shows good agreement between the simulated and measured wind, waves, surge, and high water marks. Coastal storm surge along the coast is around 2–3 m, while peak surge on the order of 3.5 m is found near Pensacola, which is slightly to the east of the landfall location on Dauphin Island. Wind waves reach 20 m at the Mobile South station (National Data Buoy Center buoy 42040) on the shelf and 2 m inside the Pensacola/Escambia Bay. Model results show that wave-induced surge (total surge subtracted by the meteorologically-induced surge due to wind and pressure) accounts for 20–30% of the peak surge, while errors of the simulated surge and waves are generally within 10% of measured data. The extent of the simulated inundation region is increased when the effects of waves are included. Surge elevations simulated by the 3D model are generally up to 15% higher than that by the 2D model, and the effects of waves are more pronounced in the 3D results. The 3D model results inside the Pensacola/Escambia Bay show significant vertical variation in the horizontal currents. While the estuary has little impact on the surge elevation along the open coastal water, surge at the head of Escambia Bay is more than 50% higher than that at the open coast with 1.5 h delay.  相似文献   

18.
对南海北部陆架坡折附近取的50个表层沉积物样品,作粒度测试,计算粒度参数。粒度分析表明研究区的沉积物主要存在4种类型:含砾砂、砾质砂、砂质砾和含砾泥质砂;沉积物组分中砾石和砂占绝对优势,基本上不含黏土。综合因子分析和聚类分析的结果把研究区划分为4类沉积区:Ⅰ类沉积区属于内陆架沉积区,Ⅱ类沉积区属于陆架坡折上部沉积区,Ⅲ类沉积区属于陆架坡折下部沉积区,Ⅳ类沉积区区属于陆架边缘沉积区,每类沉积区都代表着不同的沉积环境。研究区沉积物的粒径趋势分析结果显示,陆架坡折附近的沉积物主要向内陆架和外陆架边缘或上陆坡输运,同时存在着跨陆架输运和沿陆架坡折输运现象,这与研究区实测的底流方向相一致。本研究表明,南海北部陆架坡折附近的沉积环境和沉积物输运模式比较复杂和特殊。本研究对今后陆架和陆坡区其他相关的研究具有十分重要的指导和借鉴意义。  相似文献   

19.
Coast-hugging surface flood plumes occur on the inner shelf of northern California during the winter season, generating dense, near-bottom suspensions which may attain fluid mud concentrations as particles settle. The period of storm-heightened waves may continue into the flood period, leading to gravity-driven seaward displacement of the bottom suspension; or the wave regime may ameliorate, leaving the suspension to consolidate as a short-lived, inner-shelf flood bed. Such beds tend to be resuspended within days or weeks by subsequent storm events that may recreate the original high concentrations. The sediment is thus dispersed seaward by gravity flows, to be deposited as a muddy flood bed on the central shelf. The locus of deposition of these “high-concentration regimes” is a function of the relative intensities of river discharge and storm wave height. Greater discharge piles thicker storm beds nearer shore, while intense wave regimes allow deposition of the fluid mud further seaward. During events with high values of both parameters, large amount of fluid mud may bypass over the shelf edge. In contrast, “low-concentration regimes” occur during storm periods when there has been no recent flood deposition on the inner shelf. The shelf floor is better consolidated than in the previous case, and the resulting suspended sediment concentrations are lower. As a consequence, low-concentration regimes are winnowing and bypassing regimes, and the beds deposited are thinner and sandier. Algorithms describing deposition by high and low-concentration regimes have been embedded in a probabilistic model. A simulation of a 400-year sequence of beds deposited by winter storms and floods suggests that on the Eel shelf, the Holocene transgressive systems tract consists of back-stepping, seaward-fining event beds, whose timelines (bedding planes) dip more gently than do their gradational facies boundaries. At these longer time scales, flood beds dominate over storm beds.  相似文献   

20.
The west-central Florida inner shelf represents a transition between the quartz-dominated barrier-island system and the carbonate-dominated mid-outer shelf. Surface sediments exhibit a complex distribution pattern that can be attributed to multiple sediment sources and the ineffectiveness of physical processes for large-scale sediment redistribution. The west Florida shelf is the submerged extension of the Florida carbonate platform, consisting of a limestone karst surface veneered with a thin unconsolidated sediment cover. A total of 498 surface sediment samples were collected on the inner shelf and analyzed for texture and composition. Results show that sediment consists of a combination of fine quartz sand and coarse, biogenic carbonate sand and gravel, with variable but subordinate amounts of black, phosphorite-rich sand. The carbonate component consists primarily of molluskan fragments. The distribution is patchy and discontinuous with no discernible pattern, and the transition between sediment types is generally abrupt. Quartz-rich sediment dominates the inner 15 km north of the entrance into Tampa Bay, but south of the Bay is common only along the inner 3 km. Elsewhere, carbonate-rich sediment is the predominate sediment type, except where there is little sediment cover, in which cases black, phosphorite-rich sand dominates. Sediment sources are likely within, or around the periphery of the basin. Fine quartz sand is likely reworked from coastal units deposited during Pleistocene sea-level high stands. Carbonate sand and gravel is produced by marine organisms within the depositional basin. The black, phosphorite-rich sand likely originates from the bioerosion and reworking of the underlying strata that irregularly crop out within the study area. The distribution pattern contains elements of both storm- and tide-dominated siliciclastic shelves, but it is dictated primarily by the sediment source, similar to some carbonate systems. Other systems with similar sediment attributes include cool-water carbonate, sediment-starved, and mixed carbonate/siliciclastic systems. This study suggests a possible genetic link among the three systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号