首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用钻井和二维地震资料, 对曾母盆地南康台地以及L构造中新统碳酸盐建造的三级层序发育特征进行解剖, 归纳总结研究区碳酸盐岩层序发育模式, 认为曾母盆地在中中新世-晚中新世(5.3~16 Ma)期间发育3期较大规模的碳酸盐岩沉积旋回, 在地层上可将其划分为3个三级层序, 即SQ1、SQ2和SQ3层序.其中SQ1与SQ3应该属于经典Ⅰ型碳酸盐岩层序, 在其岩性上由低位域的致密藻灰岩沉积、水进域的泥质灰岩和高位域的珊瑚灰岩组合构成, 代表了从开阔海沉积环境过渡至礁滩相沉积环境的发育过程;而SQ2应属于淹没不整合型碳酸盐岩层序, 以泥质灰岩凝缩层+高位域的珊瑚灰岩或碎屑灰岩序列组合为特征, 其发育基本处于水体环境持续变浅的沉积环境中.   相似文献   

2.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

3.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

4.
The identification and interpretation of drowning events in the geologic record can aid significantly to the reconstruction of the depositional, tectonic and eustatic history of a study area and often improve reservoir and seal prediction in carbonate rocks. The differentiation between drowned platforms showing a record of continuous deepening and those with a record of exposure followed by rapid deepening remains, however, problematic. The Zhujiang carbonate platform (Liuhua 11-1 field, South China Sea) study shown here provides an example of an integrated approach combining high-resolution geochemistry, microfacies analyses and foraminiferal biostratigraphy in order to improve the reconstruction of environmental conditions prior, during and after platform demise and drowning. The Zhujiang carbonate platform displays the following vertical succession of four facies types i) skeletal grain facies with a miogypsinid/lepidocyclinid-dominated fauna deposited in a moderately deep (< 50 m), oligotrophic back-reef setting; ii) in situ corals in patch-reef facies in an oligotrophic lagoon (< 10 m); iii) rhodoid facies with in situ red algal crusts, dominated by Heterostegina sp. and spiroclypeids, possibly capped by a subaerial exposure surface. Well-rounded rhodoids representing a mesotrophic lagoon dominate the upper portions of the rhodoid facies; iv) pelagic marine shales of the Hanjiang Formation burying the carbonate platform after drowning. This facies succession, in combination with geochemical evidence suggests a deepening-upward trend. This trend might have been interrupted by transient subaerial exposure but no evidence for meteoric diagenesis was found at the drowning unconformity topping the carbonate platform. Instead, microfacies analyses suggest that platform demise may be related to progressive changes in environmental conditions, including increasing nutrient-levels and/or decreasing temperature up-core towards the drowning unconformity. These findings are of significance for those concerned with Miocene carbonate factories and, more specifically, the demise of carbonate platforms in general.  相似文献   

5.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

6.
Oligo–Miocene carbonates associated with the Padthaway Ridge form the southern margin of the Murray Basin, South Australia. The carbonates are a thin, somewhat condensed succession of echinoid and bryozoan‐rich limestones that record accumulation in the complex of islands and seaways and progressive burial of the Ridge through time. The rocks are grainy to muddy bioclastic packstones, grainstones and floatstones, composed of infaunal echinoderms, bryozoans, coralline algae and benthic foraminifera, with lesser contributions from molluscs and serpulid worms. Locally as much as half of these skeletal components are Fe‐stained, relict grains that imbue the lithologies with a conspicuous yellow to orange hue. This variably lithified succession is partitioned into metre‐scale, firmground‐bounded and hardground‐bounded beds textured by extensive Thalassinoides burrows. Dominant lithologies are interpreted as temperate seagrass facies. Limestones contain attributes indicative of both seagrass‐dominated palaeoenvironments and carbonate production and accumulation on unconsolidated, barren sandflat palaeoenvironments. Together these two depositional systems are thought to have generated a single multigenerational, amalgamated facies recording sedimentation within a complex temperate seagrass environment. Limestones overlying the Padthaway Ridge reflect a gradually warming climate, increasing water temperature and decreasing nutrient content, within the framework of a ridge gradually being buried in sediment. This succession from cool–temperate to warm–temperate to subtropical through time permits recognition of the relative influence of changing oceanography on a seagrass‐dominated shallow inter‐island sea floor. Criteria are proposed herein to enable future recognition of similar temperate seagrass facies in Cenozoic limestones elsewhere.  相似文献   

7.
The Table Mountain Santa Barbara, consisting of the Mio-Pliocene Seroe Domi Limestone Formation, was probably covered with a guano layer in the Pleistocene (?). Solutions, carrying guano-derived phosphate, percolated downwards, resulting in partial phosphatization of the underlying limestones. Only two phosphate minerals are present in the Table Mountain: apatite, and whitlockite.Phosphatization includes both replacement of the original carbonate or (pre-phosphate) dolomite, and cementation in primary- as well as secondary porosity (cryptocrystalline, isotropic phosphate cement, (micro)crystalline apatite, isopachous apatite fringe cement, multiple-zoned apatite crusts, rhombic whitlockite cements). Two factors controlled the final distribution of the phosphate within the Table Mountain. Firstly, changing positions of the sea level (and, therefore, of the diagenetic environments) determined the overall distribution of the phosphatized interval, a horizontal layer (98–128 m above sea level) sandwiched between two non-phosphatized limestone units.Original carbonate facies and -mineralogy was the second controlling factor causing the final variations in degree of phosphatization. The limestones comprise two lithofacies: (a) coralliferous limestone lenses erratically distributed amidst; and (b) micritic limestones. These coralliferous limestones are phosphatized preferentially forming so-called “phosphate pockets”, sharply outlined within a non-phosphatized micritic limestone “host”. These pockets are characteristically organized into five zones which are described in detail. Higher original porosity/permeability of the coralliferous limestone lenses as compared to the micrites, additionally enhanced by a phase of pre-phosphate dolomitization, determined preferential phosphatization of this facies type.A second controlling factor was the original carbonate mineralogy and resulting dia-  相似文献   

8.
《Sedimentary Geology》1999,123(1-2):103-127
The uppermost Oligocene/Lower Miocene to Upper Miocene ramp carbonates from Montagna della Maiella (Italy) form a supersequence bounded by deeply incised truncation surfaces. This supersequence is subdivided into four sequences. Each sequence is composed of skeletal limestones in its lower part and marly limestones in its upper part. The lower parts of the sequences are foramol limestones, which suggest deposition in the warm-temperate climate zone. Changes in climate, oceanography and relative sea level combined to control sedimentation in the four sequences. In the lower parts of the two older sequences, the skeletal sands built dunes, suggesting high-energy conditions. The dominant skeletal grains in the oldest sequence are larger foraminifers and in the next sequence they are bryozoans; this change reflects cooling around the time of the Aquitanian/Burdigalian boundary. In the lower parts of the two younger sequences, of Middle and Late Miocene age, sediment sheets with red-algal–bryozoan oncoids suggest deposition under calmer conditions. Transgressive and highstand systems tracts are recognized in all sequences; a shelf margin systems tract may be exposed in the second oldest sequence. In contrast to the situation that exists when warm-water carbonates are deposited, sedimentation of the foramol limestones on this isolated ramp was unable to balance accommodation during sea-level rise; this led to hemipelagic sedimentation during sea-level highstands. Conglomerates resulted from reworking along flooding surfaces.  相似文献   

9.
The Raipur Group of the Chattisgarh Basin preserves two major Late Mesoproterozoic carbonate platforms. The lower platform is about 490-m thick, separated from the upper platform (~ 670 m thick) by a 500-m thick calcareous shale. Carbonate strata cover almost 40% of the Chattisgarh Basin outcrop and represent two major platform types: a) a non-stromatolitic ramp (the Charmuria/Sarangarh Limestone) and b) a platform developed chiefly in the intertidal to shallow subtidal environment with prolific growth of stromatolites (the Chandi/Saradih Limestone). The first platform consists primarily of the black Timarlaga limestone that is locally replaced by early diagenetic dolomite. This carbonate platform experienced strong storm waves and was subsequently drowned by a major transgression, during which extensive black limestone–marl rhythmite was deposited, followed by deposition of the Gunderdehi Shale. The carbonate factory was later re-established with development of an extensive stromatolite-dominated Charmuria/Sarangarh platform that ranged from restricted embayment to open-marine conditions. Sea-level change played a major role in controlling the broad facies pattern and platform evolution. The δ13C signatures of the Chattisgarh limestones, falling within a relatively narrow range (0 to + 4‰) are typical for Upper Mesoproterozoic carbonate rocks. δ18O values, however, have a greater range (− 5.7 to − 13.3‰) indicating significant diagenetic alteration of some samples. Likely dysoxic or anoxic conditions prevailed during deposition of the black Timarlaga limestone and well-oxygenated conditions during deposition of the Gunderdehi Shale and Saradih/Chandi stromatolite. The lack of 17β,21α (moretanes) and high Tmax values suggest mature organic matter in the non-stromatolitic ramp. A paucity of diagnostic eukaryotic steroids indicates that algae were rare in the Chattisgarh Basin. A high content of hopanes supports a generally bacterially-dominated Proterozoic ocean in which various stromatolites flourished.  相似文献   

10.
As a result of early Variscan tectonic movements and of differential subsidence, a platform and basin topography was created along the northern margin of the Sahara Craton during the late Devonian. In the Moroccan Anti-Atlas Mountains, the Tafilalt Platform is an approximately N-S running ridge which developed since the late Middle Devonian. It separated a slowly subsiding shallow basin in the east (Tafilalt Basin) from a rapidly subsiding furrow in the west (Mader Basin). Platform deposits are characterized by highly reduced thicknesses, shallow subtidal to supratidal deposits in the late Frasnian and by unconformities at the Lower/Upper Frasnian and the Frasnian/Famennian boundaries. After a local transgression over emergent areas in the north, water depth probably never reached more than several tens to about 100 m in the lower Famennian. Cephalopod limestones of this age, deposited on the platform, represent a very diverse facies pattern comprising quartz-rich brachiopod coquinas, crinoidal limestones, thick-bedded cephalopod limestones and nodular limestones. Sedimentation rates ranged from 1 to 5 mm/ 1000 yr. In the late Famennian more uniform marl and nodular limestone facies suggest slightly deeper environments. Platform margins are characterized by higher rates of subsidence, debris flow deposits and slump structures. In the relatively shallow Tafilalt Basin, marls with intercalated nodular limestones were deposited. In the Mader Basin, sandy and calcareous turbidites suggest deeper water conditions in the late Devonian. During the Strunian/Tournaisian the whole area was overwhelmed by a thick deltaic sequence. The general facies distribution is in agreement with depositional models of other Upper Devonian and Lower Carboniferous cephalopod limestones in the European Variscan orogenic belts. In all these cases, condensed cephalopod limestones occupy a distinct palaeogeographic position in predictable facies sequences that reflect pre-orogenic phases in the Variscan geodynamic cycle. Moreover, close parallels exist with condensed sequences in the Triassic and Jurassic that occur in a very similar position within the Alpine orogenic cycle.  相似文献   

11.
In this study, progradation and the subsequent retrogradation of a late Paleocene isolated carbonate platform (Galala Mountains, Eastern Desert, Egypt) is demonstrated by variations of distinct facies associations from the platform margin in the north to the hemipelagic basin in the south. A combination of a sea-level drop and tectonic uplift at around 59 Ma (calcareous nannofossil biozone NP5) favored the initiation of the carbonate platform. From this time onwards, the facies distribution along the platform–basin transect can be subdivided into five facies belts comprising nine different facies associations. Their internal relationships and specific depositional settings are strongly coupled with the Maastrichtian–Paleocene seafloor topography, which resulted from local tectonic movements. Patch reefs and reef debris were deposited at the platform margin and the horizontally bedded limestones on the upper slope. Slumps and debris flows were stored on the lower slope. In the subhorizontal toe-of-slope facies belt, mass-flow deposits pass into calciturbidites. Further southwards in the basin, only hemipelagic marls were deposited. Between 59 and 56.2 Ma (NP5–NP8), the overall carbonate platform system prograded in several pulses. Distinct changes in facies associations from 56.2 to 55.5 Ma (NP9) resulted from rotational block movements. They led to increased subsidence at the platform margin and a coeval uplift in the toe-of-slope areas. This resulted in the retrogradation of the carbonate platform. Furthermore the patch-reef and reef-debris facies associations were substituted by the larger foraminifera shoal association. The retrogradation is also documented by a significant decrease in slump and debris-flow deposits on the slope and calciturbidites at the toe of slope.  相似文献   

12.
Among several lithostratigraphic subdivisions of the Gaj Formation of Miocene age, the Jhill limestone is entirely different with respect to its colour, texture and structures. This limestone unit has been evaluated to elaborate its geochemical and sedimentological characteristics. The distribution of various elements in the acid-soluble fraction has been studied in order to determine their mineralogy, sedimentary environment, facies and diagenesis. Mineralogy, recrystallization and other diagenetic changes are the main factors affecting the distribution of trace elements and their mutual relationships in the limestones. Samples of the Jhill limestone show depletion in large-sized ions (Sr, Pb & K) and also in the ions that are not compatible with calcite space group. Elements (Fe, Mn, Zn, Cu & Co) having distribution coefficient (D) above unity for natural calcites, are more enriched. Microscopic and X-ray studies revealed nearly complete conversion of aragonite into stable low-Mg calcite. An attempt has also been made to verify the reefal conditions for these limestones on the basis of geochemical studies. The plots of Sr and other facies-indicator elements show that the majority of the beds belong to forereef flank facies with some algal banks. Low Mg/Ca and Sr/Ca ratios suggest that a phreatic diagenetic environment prevailed after the deposition. High concentrations of Cr, Ni, and Co in the Jhill limestone show a positive correlation with a higher amount of insoluble residue, which reflects a relatively high rate of influx of terrigenous material.  相似文献   

13.
The nodular limestones and red marls of the Ankara region, deposited during the early to middle Jurassic, show similar palaeontological and sedimentological characteristics to those of the red nodular limestones form the Northern Alps (Adnet limestones) and from the Southern Alps (Ammonitico Rosso).
The nodular limestones appear to be hardground breccias drowned into the red marly limestones due to the instability of the bottom. The association of sponge spicules, crinoid fragments, small ostracods, benthic foraminifers, shell debris and common micrite matrix suggests a subtidal environment. The subsequent formation of red marly limestones consists of the partial dissolution of the shells; this suggests that a low sedimentation rate and/or sedimentological breaks took place during the precipitation of the ammonite-bearing marls.
The nodular limestones (hardground breccias) and the Ammonitico Rosso-type facies of the Ankara Jurassic succession were formed in a deeper subtidal environment and/or deeper shelf extending into the basin. The hardground layers drowned into the Ammonitico rosso were likely formed on a local carbonate shelf, that deepened increasingly through the early to middle Jurassic. Development of a local submarine clastic fan within the carbonate succession of the Ankara Jurassic basin indicates an irregular bottom topography induced by the syn-sedimentary faults.  相似文献   

14.
广西融安县境内的泗顶-古丹铅锌矿田面积约600平方公里。它位于江南古陆之南缘,湘、桂、粤褶皱带内。本区分布有中型铅锌矿床两处,铅锌矿、黄铁铅锌矿、黄铁矿(褐铁矿)等矿点约二十多处,是寻找铅锌矿床有利地区。 区内广泛出露下古生界寒武系清溪组(∈q)浅变质的碎屑岩,上古生界中上泥盆统东岗岭组(D2d)和桂林组(D3g)碳酸盐岩及碎屑岩(图1)。早晚古生代地层与之古生代地层与之呈角度不整合接触产出,两者分别组成上下两个构造层。下构造层属于被改造了的南岭复式东西构造带北亚带的组成部分,基本构造轮廓为轴向500-70“的紧闭型同斜倒转褶皱,并发育着北东向的断裂;上构造层为轴向北北东的宽展型的褶皱,产状平缓,倾角5。-8。,发育有多阶段形成的北东向、北西向和南北向断裂,整个矿田及外围尚未发 现任何岩浆活动的迹象。  相似文献   

15.
ABSTRACT In the western part of the central Apennines, Lower–Middle Miocene carbonates were deposited on a tropical–subtropical carbonate ramp. They record two long-term cycles, the first of which is illustrated in this paper. Between 21 and 17.5 Ma, Miocene carbonates, paraconformably overlying the Cretaceous limestones, record a transgressive event during a time of global (2nd order) sea-level lowstand. It is postulated that this deviation is related to an increase in tectonic subsidence. Between 17.5 Ma and 16–15 Ma, with a progressive relative sea-level rise, the inner–middle ramp facies belt stepped back, whereas the bryozoan-dominated outer ramp facies belt stepped back but simultaneously prograded. This bloom of suspension-feeding organisms is interpreted to reflect an increased nutrient availability, hence a change from oligotrophic to eutrophic conditions. Strontium-isotope dates constrain correlation of the second phase with a eutrophic event possibly linked to the influence of the neighbouring Apenninic accretionary wedge and foredeep system.  相似文献   

16.
南盘江盆地晚古生代盆地充填序列特征及生储盖组合划分   总被引:27,自引:9,他引:27  
以米级旋回层序为基本工作单元 ,米级旋回层序在长周期三级层序中的有序叠加形式为基础 ,在南盘江盆地晚古生代地层中共识别出 2 5个三级层序 (沉积层序 ) ;以构造不整合面为准 ,又可进一步归为 4个二级层序 (构造层序 )。根据地层、沉积特征及构造地质涵义 ,把层序界面归纳为 4种类型 :构造不整合面、沉积不整合面、淹没不整合面以及它们的相关面 ,其中构造不整合面类似于类型 界面 ,沉积不整合面类似于类型 界面。晚古生代南盘江盆地存在两个明显的造礁期。于三级海平面上升阶段主要发育礁滩相灰岩构成的储层 ;而在与三级海平面下降相关的强迫型海退过程中则发育白云岩构成的储层。因此 ,可把南盘江盆地区域性的潜在生储盖组合拟定为 3个 :以孤立台地上泥盆系生物礁和加里东运动不整合面为主要勘探对象的下组合 ;以石炭系大埔组白云岩为主要勘探对象的中组合 ;以茅口组上部和长兴组生物礁及礁顶相白云岩、东吴运动不整合面为主要勘探对象的上组合  相似文献   

17.
Syn-rift sediments in basins formed along the future southern continental margin of the Jurassic Tethys ocean, comprise, in the eastern Alps of Switzerland, up to 500 m thick carbonate turbidite sequences interbedded with bioturbated marls and limestones. In the fault-bounded troughs no submarine fans developed; in contrast, the fault scarps acted as a line source and the asymmetric geometry as well as the evolution of the basin determined the distribution of redeposited carbonates. The most abundant redeposits are bio- and lithoclastic grainstones and packstones, with sedimentary structures indicating a wide range of transport mechanisms from grain flow to high- and low-density turbidity currents. Huge chaotic megabreccias record catastrophic depositional events. Their main detrital components are Upper Triassic shallow-water carbonates and skeletal debris from nearby submarine highs. After an event of extensional tectonism, sedimentary prisms accumulated in the basins along the faults. Each prism is wedge-shaped with a horizontal upper boundary and consists of a thinning- and fining-upward megacycle. Within each megacycle six facies associations are distinguished. At the base of the fault scarp, an association of breccias was first deposited by submarine rockfall and rockfall avalanches. A narrow, approximately 4000 m wide depression along the fault was subsequently filled by the megabreccia association, in which huge megabreccias interfinger with thin-bedded turbidites and hemipelagic limestones. The thick-bedded turbidite association covered the megabreccias or formed, farther basinward, the base of the sedimentary column. Within the thick-bedded turbidites, thinning- and fining-upward cycles are common. The overlying thin-bedded turbidite association shows nearly no cyclicity and the monotonous sequence of fine-grained calciturbidites covers most of the basin area. With continuous filling and diminishing sediment supply, a basin-plain association developed comprising fine-grained and thin-bedded turbidites intercalated with bioturbated marls and limestones. On the gentle slopes opposite the fault escarpment, redeposited beds are scarce and marl/limestone alternations as well as weakly nodular limestones prevail.  相似文献   

18.
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic.In the rifting stage,the margin received lacustrine and shallow marine facies sediments.In the post-rifting thermal subsidence,the margin accumulated shallow marine facies and hemipelagic deposits,and the decpwater basins formed.Petroleum systems of deepwater setting have been imaged from seismic data and drill wells.Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea.The deepwater reservoirs are characterized by the deep sea channel fill,mass flow complexes and drowned reef carbonate platform.Profitable capping rocks on the top are mudstoues with huge thickness in the post-rifting stage.Meanwhile,the faults developed during the rifting stage provide a migration path favournble for the formation of reservoirs.The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta,decpwater submarine fan sandstone and reef carbonate reservoirs.  相似文献   

19.
利用野外露头、岩心、测井录井和分析化验资料,对柴达木盆地西部(简称“柴西地区”)新生界干柴沟组湖相碳酸盐岩进行了研究,划分了其沉积微相类型,研究了其分布规律,分析其形成环境和控制因素,并建立了相应沉积模式。该区湖相碳酸盐岩在垂向上与碎屑岩频繁互层,湖相碳酸盐岩包括颗粒灰岩、藻灰岩、泥晶灰岩和混积岩4大类11种,划分出了灰泥坪、颗粒滩、藻丘(礁)、浅湖湾以及(半)深湖泥灰岩相等5种沉积微相。通过分析不同碳酸盐岩及其微相时空展布特征,认为其发育主要受控于湖盆构造运动、湖平面变化、陆源碎屑注入、古气候与古水介质条件、古地貌与古水深环境,并在此基础上建立了柴西湖相碳酸盐岩的沉积模式。研究认为柴达木盆地西部干柴沟组沉积时期,湖盆为典型咸化湖盆,构造活动相对稳定,湖平面上升达到峰值。碳酸盐岩主要发育在湖侵期,高频湖平面变化形成了碳酸盐岩与碎屑岩频繁互层。在枯水期,盆地坡折处发育碎屑岩滩坝或三角洲前缘沉积;在湖侵期,盆地坡折处发育了鲕粒滩及藻灰岩,盆地洼陷区发育泥灰岩或灰质泥岩。  相似文献   

20.
In northern Euboea (Eastern Greece), Late Cretaceous platform carbonates of the Pelagonian Zone pass depositionally upwards into Maastrichtian hemipelagic limestones, possibly reflecting a rifting event in the adjacent Neotethys. This is followed by a c. 1 km-thick unit of siliciclastic turbidites, debris flows and detached limestone blocks. Thrust intercalations of ophiolitic rocks comprise altered pillow basalts and ultramafic rocks with ophicalcite. Calcite veins in sheared serpentinite contain planktonic foraminifera and the ophicalcite is directly overlain, with a depositional contact, by Globotruncana-bearing pelagic limestones and calciturbidites of Maastrichtian age. The ophiolitic rocks are interpreted as Late Cretaceous oceanic crust and mantle, that formed at a fracture zone, or rifted spreading axis within a Neotethyan, Vardar basin to the east. During the Early Tertiary (Palaeocene–Eocene), the Neotethyan basin began to close, with development of a subduction-accretion complex, mainly comprising sheared, trench-type sandstones, associated with ophiolitic slices. In response to trench/margin collision, the Pelagonian carbonate platform foundered and limestone debris flows and olistoliths were shed into a siliciclastic foreland basin. Suturing of the Neotethyan ocean basin then resulted in westwards thrusting of oceanic units over the foreland basin, thrusting of slices of inferred Late Cretaceous Pelagonian carbonate platform slope and large-scale recumbent folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号