共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
水稻叶面积指数(leaf area index,LAI)是评价其长势的重要农学参数,高光谱遥感能够实现叶面积指数的快速无损监测。为了寻找反演水稻LAI的最优植被指数,扩展水稻LAI高光谱估测模型的普适性,选取宁夏引黄灌区水稻为研究对象,通过设置不同氮素处理,借助相关分析、回归分析等方法研究高光谱植被指数与水稻LAI之间的定量关系,并通过确立的最优波段组合,构建4种植被指数与水稻LAI的高光谱反演模型。结果表明,水稻LAI在抽穗末期达到最大值,并随氮素水平的增加而增加;水稻冠层原始光谱反射率在400~722 nm和1 990~2 090 nm波段与LAI达到极显著负相关水平,在近红外区域760~1 315 nm与LAI呈极显著正相关。模型检验结果表明,以比值植被指数RVI(850,750)为变量建立的水稻LAI估测模型最佳,研究结果可为水稻LAI的高光谱估测提供地域参考。 相似文献
3.
植被生物量高光谱遥感监测研究进展 总被引:2,自引:0,他引:2
植被生物量的评估对于研究全球碳循环具有重大意义,而高光谱遥感技术为精确反演地表属性提供了重要的数据支持。针对如何更好地应用高光谱遥感技术进行植被生物量精确反演的问题,该文详细阐述了国内外应用高光谱技术估测植被生物量的研究进展。对反演植被生物量所涉及的数据源、反演模型的构建方法及其模型特点、反演模型应用对象等内容进行了综合评述,并通过分析认为,高光谱遥感技术较传统的多光谱遥感技术在生物量反演精度上有了显著的提高。同时,对建模方法、多源遥感数据融合以及模型通用性等方面的研究进行了展望,以达到在大尺度范围内对植被生物量进行准确反演的目的。 相似文献
4.
利用高光谱遥感图像估算小麦氮含量 总被引:33,自引:0,他引:33
利用2001—04—26实用型模块化成像光谱仪(0MIS)在北京小汤山地区获取的航空高光谱遥感图像,对图像进行了精确的几何纠正和反射率转换,提取出43条小麦图像光谱与地面叶片全氮含量数据相对应,运用红边、光谱吸收特征分析方法和逐步回归算法,选择和设计了叶片全氮反演的特征波段和特征参数,并进行了全氮含量境图。实验结果表明:由吸收特征光谱(590-756nm,1096—1295nm,1295—1642nm)确定的特征深度与面积能够很好地对叶片全氮含量进行反演;NDVI(NRCA1175.8,NRCA733.9)和NDVI(dr745,dr699.2)与TN的关系最好(R^2分别为0.8145,0.769);全氮含量填图的值域和分布与地面调查和测量结果一致。 相似文献
5.
冬小麦叶面积指数的高光谱估算模型研究 总被引:2,自引:0,他引:2
本文以山东禹城为研究区,利用地面实测光谱数据,探讨不同植被指数和红边参数建立高光谱模型反演冬小麦叶面积指数的精度.通过逐波段分析计算了4种植被指数( NDVI、RVI、SAVI、EVI),结合同步观测LAI数据,确定反演叶面积指数的最优波段;计算了5种常用的高光谱植被指数MCARI、MCARI2、OSAVI、MTVI2、MSAVI2,同时利用4种常用方法计算红边位置和红谷,与实测LAI进行回归分析,比较植被指数和红边参数模型对冬小麦LAI的估测精度.结果表明各因子与LAI均具有较高的相关性,整个研究区归一化植被指数具有最高的反演精度,确定了估算冬小麦LAI的最优模型,并使用独立的LAI观测数据 相似文献
6.
基于中国农业科学院在呼伦贝尔草原实测的120组草地冠层光谱反射率及相应的叶面积指数(LAI)数据,在进行主成分分析(PCA)实现降维处理的基础上,利用径向基函数(radial basis function,RBF)神经网络方法对草地LAI进行了高光谱反演研究.PCA结果表明,前9个主成分的累积贡献率达到了99.782%,能包含原光谱数据的绝大部分信息.将120组LAI及相应的9个主成分样本数据随机分为校正集数据(90组)和预测集数据(30组),分别用于神经网络模型的建立和LAI的预测.所构建的神经网络模型的模拟结果表明,RBF神经网络模型对校正集样本的模拟准确率达到100%(RMSE =0.009 6,R2 =0.999);预测集样本的实测LAI和模拟LAI之间的均方误差和决定系数分别为0.218 6和0.839,取得了较好的模拟效果,有效提高了传统的多元线性回归方程(RMSE =0.416 5,R2=0.570)的计算精度. 相似文献
7.
通过高光谱遥感图像空间邻域内光谱特征的变化,研究了邻域光谱度量指数;根据邻域内端元光谱特征的变化,提出了邻域独立端元指数提取图像的空间维细节信息。通过真实高光谱遥感图像检验,两类邻域指数能够较好地提取高光谱遥感图像中的细节,为进一步结合空间维、光谱维特征的高精度目标探测与识别创造了有利条件。 相似文献
8.
本文介绍了采用更系统的生物学方法,根据水稻在整个生长期的叶面积指数轨线,按叶面积指数的一次测量值,结合气象和光谱数据及陆地卫星MSS图像,估算大面积水稻产量的方法。 在产量与总截获的关系中,叶面积指数是最重要的参量之一。文中重点分析了由水稻在MSS波段内的光谱数据构成的绿度指数和Suits模式估算叶面积指数的结果。表明,用Suits模式计算的叶面积指数有较高的相关系数和较低的剩余标准差。并用这个方法计算了不同田块的叶面积指数,再根据这些数据和MSS图像建立关系。本文比较了卫星数据和多种绿度指数的关系,认为垂直植被指数(PVI)是估算叶面积指数的最好参量,因为它消除了土壤背景的影响,并用它求出了大面积水稻的叶面积指数分布。再根据已建立的叶面积指数轨线和作物截获的有效光合辐射(TIPAR)关系,计算了TIPAR,编制了产置分布图。文章分析了计算结果,并以1983年的例子进一步讨论了该方法的适用性。结果表明,预测的水稻产量和实测产量间的相关系数为0.9左右。 相似文献
9.
精确估算森林生物量对全球碳平衡以及气候变化的研究有重要意义。以亚热带天然次生林为研究对象,借助地面实测样地数据,通过对机载LiCHy(LiDAR,CCD and Hyperspectral)传感器同时获取的高光谱和高空间分辨率数据进行信息提取和数据融合,建模反演森林生物量。首先通过面向对象分割方法进行单木冠幅提取,然后融合从高光谱数据提取的光谱特征变量和从高空间分辨率数据提取的单木冠幅统计变量,构建多元回归模型估算地上、地下生物量,最后利用地面实测生物量经交叉验证评价模型精度。结果表明,综合模型的精度(R~2为0.54—0.62)高于高光谱模型(R~2为0.48—0.57);在高光谱模型中地上生物量模型精度(R~2为0.57)高于地下生物量模型(R~2为0.48);在综合模型中地上生物量模型精度(R~2为0.62)同样高于地下生物量模型(R~2为0.54)。交叉验证结果表明,与仅使用高光谱数据(单一数据源)相比,通过集成高光谱和高空间分辨率数据的生物量反演效果有所提升,可以更加有效地估算亚热带森林生物量。 相似文献
10.
针对已有的测量叶面积指数(LAI)的方法中,LAI测量结果受其定义、采样方法、数据分析和仪器误差等影响产生极大差异的问题,该文使用地面激光雷达(TLS)提取LAI,对北京林业大学校园内具有代表性的单株树木进行了扫描,通过对数据预处理提取出树冠点云,将其模拟为半球图像后运用球极平面投影和Lambert方位角等面积投影两种投影方法,通过统计面积的方法分别计算不同投影方法和图像划分方法下的孔隙率,进而计算出真实叶面积指数。同时与利用叶面积指数仪LAI-2000所测得的数据进行对比。研究结果表明,地面激光雷达提取单木真实叶面积指数与实测值对比,两种投影下18个环的图像划分方法均更接近真实值,其中在Lambert方位角等面积投影下计算结果更准确。 相似文献
11.
12.
13.
14.
地表生物量对农作物估产、植被长势评估具有很重要的意义。随着遥感技术的发展与应用,遥感为生物量估算提供了一种新的手段。本文以唐山市为例,利用小麦种植区的MODIS遥感影像数据和同期野外调查获得的16组32个生物量数据,对比分析了归一化植被指数(NDVI)、增强型植被指数(EVI)与小麦生物量多个回归方程的相关系数,进而建立了NDVI、EVI与小麦生物量的线性回归模型。结果显示,使用MODIS数据的植被指数能够很好地对研究区地上生物量进行估算,其中使用EVI的三次函数模型拟合精度最高,并且对每组数据进行平均处理会使模型精度进一步提高。 相似文献
15.
基于遥感的区域尺度森林地上生物量估算研究 总被引:1,自引:0,他引:1
森林是陆地生态系统最大的碳库,精确估算森林生物量是陆地碳循环研究的关键。首先从机载LiDAR数据中提取高度和密度统计量,采用逐步回归模型进行典型样区生物量估算;然后利用机载LiDAR数据估算的生物量作为样本数据,与多光谱遥感数据Landsat8 OLI的波段反射率及植被指数建立回归模型,实现区域尺度森林地上生物量估算。实验结果显示,机载LiDAR数据估算的鼎湖山样区生物量与地面实测生物量的相关性R2达0.81,生物量RMSE为40.85 t/ha,说明机载LiDAR点云数据的高度和密度统计量与生物量存在较高的相关性。以机载LiDAR数据估算的生物量为样本数据,结合多光谱遥感数据Landsat8 OLI估算粤西北地区的森林地上生物量,精度验证结果为:R2为0.58,RMSE为36.9 t/ha;针叶林、阔叶林和针阔叶混交林等3种不同森林类型生物量的估算结果为:R2分别为0.51(n=251)、0.58(n=235)和0.56(n=241),生物量RMSE分别为24.1 t/ha、31.3 t/ha和29.9 t/ha,估算精度相差不大。总体上看,利用遥感数据可以开展区域尺度的森林地上生物量估算,为森林固碳监测提供有力的参考数据。 相似文献
16.
提出了一种基于变换域离散度排序的高光谱图像快速压缩算法。该算法针对高光谱数据在Hadamard变换域的特性,自适应地选择有利的排列顺序,将变换域光谱矢量的各维度按照离散度进行重新排序,不仅使光谱矢量的大部分能量和差异集中在低维部分,而且把高信噪比的分量调整到低维空间,并据此构造出高效的码字排除不等式,最后结合LBG(Linde Bazo Gray)聚类算法,通过矢量量化快速完成高光谱图像的编码。在不同压缩比下进行实验,结果表明,本文提出的高光谱图像压缩算法能在保证良好的图像恢复质量的前提下,大幅度降低计算复杂度,实现快速压缩。 相似文献
17.
18.