首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gondwana Research》2009,15(4):587-596
We developed a 238U–206Pb and 207Pb206Pb zircon dating method using a Cameca NanoSIMS NS50 ion microprobe. A 7-to 9-nA O primary beam was used to sputter a 15-μm crater, and secondary positive ions were extracted for mass analysis using the Mattauch–Herzog geometry. The multicollector system was modified to detect 90Zr+, 204Pb+, 206Pb+, 238U16O+, and 238U16O2+ ions simultaneously. A mass resolution of about 4000 at 10% peak height and with a flat peak top was attained, and the sensitivity of Pb was about 4 cps·nA 1·ppm 1. A multicrystal zircon standard (QGNG) from South Australia with a U–Pb age of 1842 Ma was used as a reference for Pb+/UO+–UO2+/UO+ calibration, and on the basis of the positive correlation between these ratios, we determined the sample 206Pb/238U ratios. 207Pb/206Pb ratios were measured by magnetic scanning in single-collector mode. The standard zircons 91500, from Canada, and SL13, from Sri Lanka, were analyzed against QGNG. Observed 238U–206Pb and 207Pb206Pb ages agreed well with published ages within experimental error. Then, 16 zircon grains in a metamorphic rock from Nagasaki, Japan, were analyzed. Observed ages were compatible with SHRIMP ages, suggesting that the NanoSIMS with a 15-μm probe diameter is suitable for ion microprobe U–Pb zircon dating.  相似文献   

2.
Improvements in the technology of laser ablation and ICP-MS instruments make LA-MC-ICPMS a rapid, precise and accurate method for U–Pb zircon geochronology. In this review we describe the main stages of the evolution of this in situ approach from the early 1990s to the present time. Some key points have been progressively improved. The crater size has been reduced to achieve real in situ measurements. The laser wavelength has been reduced as well as the duration of each pulse in order to lower inter-element fractionation. The blank from the gas has to be lowered as far as possible. Double focusing instruments and magnetic field sectors allow flat-topped peaks required for precise isotope ratio measurement to be obtained. The use of a multi-ion counting system significantly improves the sensitivity of the method and the static mode of integration favours the precision of measurement of the transient signal originating from a noisy laser ablated particle beam.Combining the use of a 213 nm UV laser and a MC-ICPMS equipped with a multi-ion counting system operating in static mode, the common precisions achieved for the key ratios 207Pb/206Pb and 206Pb/238U are better than 1% and 3% (2σ) respectively, including error propagation associated with standard normalization. Until now, the use of a zircon standard has remained necessary to ensure the accuracy of the calculated age. A strategy for common-Pb correction is proposed according to the age of the zircon and according to the Th/U ratio of the grains. After recording sixteen to twenty spot analyses the precision usually achieved on the age is about 1% and even significantly better for Proterozoic samples.In order to show the performance achieved by modern LA-MC-ICPMS geochronology, we tested four zircon samples covering a wide age range from 290 to 2440 Ma. These new age determinations can be compared in term of precision and accuracy since they have already been dated by reference methods (ID-TIMS and SHRIMP). Further developments in the technology of ion counters equipping modern MC-ICPMS and in laser systems will certainly be applied to a large field of geochronology studies in the near future as an alternative to SIMS for in situ age determination.  相似文献   

3.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   

4.
Archean basement gneisses and supracrustal rocks, together with Neoproterozoic (Sinian) metasedimentary rocks (the Penglai Group) occur in the Jiaobei Terrane at the southeastern margin of the North China Craton. SHRIMP U–Pb zircon dating of an Archean TTG gneiss gave an age of 2541 ± 5 Ma, whereas metasedimentary rocks from the Neoproterozoic Penglai Group yielded a range in zircon ages from 2.9 to 1.8 Ga. The zircons can be broadly divided into three age populations, at: 2.0–1.8 Ga, 2.45–2.1 Ga and >2.5 Ga. Detrital zircon grains with ages >2.6 Ga are few in number and there are none with ages <1.8 Ga. These results indicate that most of the detrital material comes from a Paleoproterozoic source, most likely from the Jianshan and Fenzishan groups, with some material coming from Archean gneisses in the Jiaobei Terrane. An age of 1866 ± 4 Ma for amphibolite-facies hornblende–plagioclase gneiss, forming part of a supracrustal sequence within the Archean TTG gneiss, indicates Late Paleoproterozoic metamorphism. Both the Archean gneiss complex and Penglai metasedimentary rocks resemble previously described components of the Jiao-Liao-Ji orogenic belt and suggest that the Jiaobei Terrane has a North China Craton affinity; they also suggest that the time of collision along the Jiao-Liao-Ji Belt was at 1865 Ma.  相似文献   

5.
The Qichun granitoids exposed in the Dabie Orogen of China are composed of two types of rocks: porphyritic monzogranite (with variable schistosity) and syenogranite (without schistosity). The two types show large differences in geochemical characteristics. The porphyritic monzogranite is characterized by high Al2O3 content (15.73%), relatively high CaO (2.46%) and Na2O contents (Na2O/K2O=1.27), strong depletion in HREE and strong fractionation between LREE and HREE ((La/Yb)N=46.8), similar to some high Al2O3 Archaean TTG gneisses. Conversely, the syenogranite is characterized by relatively low Al2O3 (14.05%) and CaO (0.82%) contents, and higher K2O than Na2O (Na2O/K2O=0.81). The degree of fractionation between LREE and HREE is minor. The U–Pb SHRIMP zircon age of the porphyritic monzogranite is 841±15 and 824±27 Ma for the syenogranite. These ages are similar to the protolith emplacement ages of granitic gneisses in the Dabie Orogenic Belt. The existence of weakly to unmetamorphosed granitoids in the Dabie Orogen shows that the granitoids were situated in the back part of the subducted plate during collision and subduction between the Yangtze and the North China cratons, and may represent outcrops of the Yangtze basement.  相似文献   

6.
The Bansong Group (Daedong Supergroup) in the Korean peninsula has long been considered to be an important time marker for two well-known orogenies, in that it was deposited after the Songnim orogeny (Permian–Triassic collision of the North and South China blocks) but was deformed during the Early to Middle Jurassic Daebo tectonic event. Here we present a new interpretation on the origin of the Bansong Group and associated faults on the basis of structural and geochronological data. SHRIMP (Sensitive High-Resolution Ion MicroProbe) U–Pb zircon age determination of two felsic pyroclastic rocks from the Bansong Group formed in the foreland basin of the Gongsuweon thrust in the Taebaeksan Basin yielded ages of 186.3 ± 1.5 and 187.2 ± 1.5 Ma, respectively, indicating the deposition of the Bansong Group during the late Early Jurassic. Inherited zircon component indicates ca. 1.9 Ga source material for the volcanic rocks, agreeing with known basement ages.The Bansong Group represents syntectonic sedimentation during the late Early Jurassic in a compressional regime. During the Daebo tectonic event, the northeast-trending regional folds and thrusts including the Deokpori (Gakdong) and Gongsuweon thrusts with a southeast vergence developed in the Taebaeksan Basin. This is ascribed to deformation in a continental-arc setting due to the northwesterly orthogonal convergence of the Izanagi plate on the Asiatic margin, which occurred immediately after the juxtaposition of the Taebaeksan Basin against the Okcheon Basin in the late stage of the Songnim orogeny. Thus, the Deokpori thrust is not a continental transform fault between the North and South China blocks, but an “intracontinental” thrust that developed after their juxtaposition.  相似文献   

7.
J.L. Paquette  M. Tiepolo   《Chemical Geology》2007,240(3-4):222-237
Monazite [(LREE)PO4], a common accessory mineral in magmatic and metamorphic rocks, is complementary to zircon in U–Th–Pb geochronology. Because the mineral can record successive growth phases it is useful for unravelling complex geological histories. A high spatial resolution is required to identify contrasted age domains that may occur at the crystal-scale. Bulk mineral techniques such as ID-TIMS, applied to single monazite grains recording multiple overgrowths or isotope resetting can result in partly scattered discordant analytical points that produce inaccurate intercept ages. Laser ablation (LA)-ICPMS has been demonstrated to be a useful technique for U–Th–Pb dating of zircons, and this study tests its analytical capabilities for dating monazite. A sector field high resolution ICPMS coupled with a 193 nm ArF excimer laser ablation microprobe is capable of achieving a high spatial resolution and producing stable and reliable isotope measurements.

The U–Th–Pb systematic was applied to monazite grains from several samples: a lower Palaeozoic lens from high-grade terrains in Southern Madagascar, Neogene hydrothermal crystals from the Western Alps, a Palaeoproterozoic very high temperature granulite from central Madagascar and a Variscan leucogranite from Spain, directly on a polished thin section. The major aim was to compare and/or reproduce TIMS and EMP ages of monazite from a variety of settings and ages. The three independent 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios and ages were calculated. Isotope fractionation effects (mass bias, laser induced fractionation) were corrected using a chemically homogeneous and U–Pb concordant monazite as external standard.

This study demonstrates that excimer laser ablation (ELA)-ICPMS allows U–Th–Pb dating of monazite with a high level of repeatability, accuracy and precision as well as rapidity of analysis. A spatial resolution almost comparable to that of EMP in terms of crater width (5 μm) produced precise 208Pb/232Th, 206Pb/238U and 207Pb/235U ratios for dating Palaeozoic to Precambrian monazites. The advantages of (ELA)-ICPMS isotope dating are precision, accuracy and the ability to detect discordance. In the case of late Miocene hydrothermal monazites from the Alps, a larger spot size of 25 μm diameter is required, and precise and accurate ages were obtained only for 208Pb/232Th systematics. Results from the Variscan granite show that in situ U–Th–Pb dating of monazites with (ELA)-ICPMS is possible using a 5 μm spot directly on thin sections, so that age data can be placed in a textural context.  相似文献   


8.
The Yunkai Terrane is one of the most important pre-Devonian areas of metamorphosed supracrustal and granitic basement rocks in the Cathaysia Block of South China. The supracrustal rocks are mainly schist, slate and phyllite, with local paragneiss, granulite, amphibolite and marble, with metamorphic grades ranging from greenschist to granulite facies. Largely on the basis of metamorphic grade, they were previously divided into the Palaeo- to Mesoproterozoic Gaozhou Complex, the early Neoproterozoic Yunkai ‘Group’ and early Palaeozoic sediments. Granitic rocks were considered to be Meso- and Neoproterozoic, or early Palaeozoic in age. In this study, four meta-sedimentary rock samples, two each from the Yunkai ‘Group’ and Gaozhou Complex, together with three granite samples, record metamorphic and magmatic zircon ages of 443–430 Ma (Silurian), with many inherited and detrital zircons with the ages mainly ranging from 1.1 to 0.8 Ga, although zircons with Archaean and Palaeoproterozoic ages have also been identified in several of the samples. A high-grade sillimanite–garnet–cordierite gneiss contains 242 Ma metamorphic zircons, as well as 440 Ma ones. Three of the meta-sedimentary rocks show large variations in major element compositions, but have similar REE patterns, and have tDM model ages of 2.17–1.91 Ga and εNd (440 Ma) values of −13.4 to −10.0. Granites range in composition from monzogranite to syenogranite and record tDM model ages of 2.13–1.42 Ga and εNd (440 Ma) values of −8.4 to −1.2. It is concluded that the Yunkai ‘Group’ and Gaozhou Complex formed coevally in the late Neoproterozoic to early Palaeozoic, probably at the same time as weakly to un-metamorphosed early Palaeozoic sediments in the area. Based on the detrital zircon population, the source area contained Meso- to Neoproterozoic rocks, with some Archaean material. Palaeozoic tectonothermal events and zircon growth in the Yunkai Terrane can be correlated with events of similar age and character known throughout the Cathaysia Block. The lack of evidence for Palaeo- and Mesoproterozoic rocks at Yunkai, as stated in earlier publications, means that revision of the basement geology of Cathaysia is necessary.  相似文献   

9.
The Fosdick Mountains migmatite–granite complex in West Antarctica records episodes of crustal melting and plutonism in Devonian–Carboniferous time that acted to transform transitional crust, dominated by immature oceanic turbidites of the accretionary margin of East Gondwana, into stable continental crust. West Antarctica, New Zealand and Australia originated as contiguous parts of this margin, according to plate reconstructions, however, detailed correlations are uncertain due to a lack of isotopic and geochronological data. Our study of the mid-crustal exposures of the Fosdick range uses U–Pb SHRIMP zircon geochronology to examine the tectonic environment and timing for Paleozoic magmatism in West Antarctica, and to assess a correlation with the better known Lachlan Orogen of eastern Australia and Western Province of New Zealand.NNE–SSW to NE–SW contraction occurred in West Antarctica in early Paleozoic time, and is expressed by km-scale folds developed both in lower crustal metasedimentary migmatite gneisses of the Fosdick Mountains and in low greenschist-grade turbidite successions of the upper crust, present in neighboring ranges. The metasedimentary rocks and structures were intruded by calc-alkaline, I-type plutons attributed to arc magmatism along the convergent East Gondwana margin. Within the Fosdick Mountains, the intrusions form a layered plutonic complex at lower structural levels and discrete plutons at upper levels. Dilational structures that host anatectic granite overprint plutonic layering and migmatitic foliation. They exhibit systematic geometries indicative of NNE–SSW stretching, parallel to a first-generation mineral lineation. New U–Pb SHRIMP zircon ages for granodiorite and porphyritic monzogranite plutons, and for leucogranites that occupy shear bands and other mesoscopic-scale structural sites, define an interval of 370 to 355 Ma for plutonism and migmatization.Paleozoic plutonism in West Antarctica postdates magmatism in the western Lachlan Orogen of Australia, but it coincides with that in the central part of the Lachlan Orogen and with the rapid main phase of emplacement of the Karamea Batholith of the Western Province, New Zealand. Emplaced within a 15 to 20 million year interval, the Paleozoic granitoids of the Fosdick Mountains are a product of subduction-related plutonism associated with high temperature metamorphism and crustal melting. The presence of anatectic granites within extensional structures is a possible indication of alternating strain states (‘tectonic switching’) in a supra-subduction zone setting characterized by thin crust and high heat flow along the Devonian–Carboniferous accretionary margin of East Gondwana.  相似文献   

10.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

11.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   

12.
It has been generally accepted that the South China Block was formed through amalgamation of the Yangtze and Cathaysia Blocks during the Proterozoic Sibaoan orogenesis, but the timing and kinematics of the Sibao orogeny are still not well constrained. We report here SHRIMP U–Pb zircon geochronological and geochemical data for the Taohong and Xiqiu tonalite–granodiorite stocks from northeastern Zhejiang, southeastern margin of the Yangtze Block. Our data demonstrate that these rocks, dated at 913 ± 15 Ma and 905 ± 14 Ma, are typical amphibole-rich calc-alkaline granitoids formed in an active continental margin. Combined with previously reported isotopic dates for the  1.0 Ga ophiolites and  0.97 Ga adakitic rocks from northeastern Jiangxi, the timing of the Sibao orogenesis is thus believed to be between  1.0 and  0.9 Ga in its eastern segment. It is noted that the Sibao orogeny in South China is in general contemporaneous with some other early Neoproterozoic (1.0–0.9 Ga) orogenic belts such as the Eastern Ghats Belt of India and the Rayner Province in East Antarctica, indicating that the assembly of Rodinia was not finally completed until  0.9 Ga.  相似文献   

13.
The Amapá Block, southeastern Guiana Shield, represents an Archean block involved in a large Paleoproterozoic belt, with evolution related to the Transamazonian orogenic cycle (2.26 to 1.95 Ga). High spatial resolution dating using an electron-probe microanalyzer (EPMA) was employed to obtain U–Th–Pb chemical ages in monazite of seven rock samples of the Archean basement from that tectonic block, which underwent granulite- and amphibolite-facies metamorphism. Pb–Pb zircon dating was also performed on one sample.Monazite and zircon ages demonstrate that the metamorphic overprinting of the Archean basement occurred during the Transamazonian orogenesis, and two main tectono-thermal events were recorded. The first one is revealed by monazite ages of 2096 ± 6, 2093 ± 8, 2088 ± 8, 2087 ± 3 and 2086 ± 8 Ma, and by the zircon age of 2091 ± 5 Ma, obtained in granulitic rocks. These concordant ages provided a reliable estimate of the time of the granulite-facies metamorphism in the southwest of the Amapá Block and, coupled with petro-structural data, suggest that it was contemporaneous to the development of a thrusting system associated to the collisional stage of the Transamazonian orogenesis, at about 2.10–2.08 Ga.The later event, under amphibolite-facies conditions, is recorded by monazite ages of 2056 ± 7 and 2038 ± 6 Ma, and is consistent with a post-collisional stage, marked by granite emplacement and coeval migmatization of the Archean basement along strike-slip shear zones.  相似文献   

14.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

15.
Thin layers and lenses of granitic leucosome are widely distributed within amphibolites, paragneisses and orthogneisses of the Sulu UHP terrane. They are parallel to, or cross‐cut, foliations in the host rocks at different scales and show evidence of coalescence and migration to form centimetre‐ to decimetre‐scale segregations. Variously migmatized rocks extend at least 350 km from SW Sulu (Maobei) to NE Sulu (Weihai), in a band at least 50 km wide. A combined study of mineral inclusions, cathoduluminescence (CL) images, U–Pb LA‐ICP‐MS dates, and in‐situ trace element compositions of zircon provide clear evidence on the nature and timing of partial melting in these UHP rocks. Most zircon from the granitic leucosomes occurs as distinct overgrowths around inherited (igneous or metamorphic) cores or as new, euhedral crystals. The overgrowths and new crystals commonly show perfectly euhedral shapes, have pronounced oscillatory zoning and contain felsic mineral inclusions, such as Kfs + Pl + Qtz ± Ilm ± monazite (Mon). In contrast, the inherited igneous or metamorphic cores are rounded or irregular, contain low‐P or UHP mineral inclusions and show clear dissolution textures. These data suggest that the new zircon is anatectic in origin and that it grew during partial melting of the UHP rocks. The REE patterns of the anatectic zircon show steep slopes from the HREE to LREE with strongly to moderately negative Eu anomalies (Eu/Eu* = 0.31–0.72) and pronounced positive Ce anomalies (Ce/Ce* = 6.8–26.5). Abundant U–Pb spot analyses of the anatectic zircon reveal two discrete and meaningful ages of partial melting within the Sulu UHP terrane. Anatectic zircon from 12 granitic leucosomes within amphibolites, paragneisses, and orthogneisses from Sulu UHP slices II and III yields consistent mean U–Pb ages of 219.0 ± 1.2 to 218.3 ± 1.6 Ma, 218.8 ± 2.0 to 217.3 ± 1.7 Ma and 218.2 ± 1.4 to 215.0 ± 1.5 Ma, respectively. In contrast, anatectic zircon from six granitic leucosomes within paragneisses and orthogneisses from Sulu UHP slice III records younger mean U–Pb ages of 151.9 ± 1.3 to 151.1 ± 1.8 Ma and 155.9 ± 1.8 to 153.7 ± 1.7 Ma, respectively. These data imply that the Sulu UHP terrane experienced two Mesozoic partial melting events. The first partial melting event (219–215 Ma) was probably associated with a Late Triassic granulite facies stage of ‘hot’ exhumation, whereas the second (156–151 Ma) is interpreted as the result of Middle‐Late Jurassic extension and thinning of the previously thickened crust of the Sulu UHP terrane. Both partial melting events induced extensive retrograde metamorphism of the eclogites and their country rocks.  相似文献   

16.
Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite facies zones of the Higo low‐P/high‐T metamorphic terrane. Here, we report data from an outcrop in the highest grade part of the granulite facies zone, in which diatexite occurs as a 3 m thick layer between 2 m thick layers of stromatic‐structured metatexite within pelitic gneiss. The migmatites and gneiss contain the same peak mineral assemblage of biotite + plagioclase + quartz + garnet + K‐feldspar with retrograde chlorite ± muscovite and some accessory minerals of ilmenite ± rutile ± titanite + apatite + zircon + monazite ± pyrite ± zinc sulphide ± calcite. Calculated metamorphic P–T conditions are 800–900 °C and 9–12 kbar. Zircon in the diatexite forms elongate euhedral crystals with oscillatory zoning, but no core–rim structure. Zircon from the gneiss and metatexite forms euhedral–subhedral grains comprising inherited cores overgrown by thin rims. The overgrowth rims in the metatexite have lower Th/U ratios than zircon in the diatexite and yield a 206Pb/238U age of 116.0 ± 1.6 Ma, which is older than the 110.1 ± 0.6 Ma 206Pb/238U age derived from zircon in the diatexite. Zircon from the diatexite has variable REE contents with convex upward patterns and flat normalized HREE, whereas the overgrowth rims in the metatexite and gneiss have steep HREE‐enriched patterns; however, both types have similar positive Ce and negative Eu anomalies. 176Hf/177Hf ratios in the overgrowth rims from the metatexite are more variable and generally lower than values from zircon in the diatexite. Based on U–Pb ages, trace element and Hf isotope data, the zircon rims in the metatexite are interpreted to have crystallized from a locally derived melt, following partial dissolution of inherited protolith zircon during anatexis, whereas the zircon in the diatexite is interpreted to have crystallized from a melt that included an externally derived component. By integrating zircon and petrographic data for the migmatites and pelitic gneiss, the metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived juvenile component. The Cretaceous high‐temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle‐derived basalts under a volcanic arc along the eastern margin of the Eurasian continent and advection of heat via hybrid silicic melts from the lower crust. Post‐peak crystallization of anatectic melts in a high‐T region at mid‐crustal depths occurred in the interval c. 116–110 Ma, as indicated by the difference in zircon ages from the metatexite and diatexite migmatites.  相似文献   

17.
U–Pb single zircon crystallization ages were determined using TIMS and sensitive high resolution ion microprobe (SHRIMP) on samples of granitoid rocks exposed in the Serrinha nucleus granite–greenstone terrane, in NE Brazil. Our data show that the granitoid plutons can be divided into three distinct groups. Group 1 consists of Mesoarchaean (3.2–2.9 Ga) gneisses and N-S elongated TTG (Tonalite-Trondhjemite-Granodiorite) plutons with gneissic borders. Group 2 is represented by ca. 2.15 Ga pretectonic calc-alkaline plutons that are less deformed than group 1. Group 3 is ca. 2.11–2.07 Ga, late to post-tectonic plutons (shoshonite, syenite, K-rich granite and lamprophyre). Groups 2 and 3 are associated with the Transamazonian orogeny. Xenocryst ages of 3.6 Ga, the oldest zircon yet recorded within the São Francisco craton, are found in the group 3 Euclides shoshonite within the Uauá complex and in the group 2 Quijingue trondhjemite, indicating the presence of Paleoarchaean sialic basement.Group 1 gneiss-migmatitic rocks (ca. 3200 Ma) of the Uauá complex constitute the oldest known unit. Shortly afterwards, partial melting of mafic material produced a medium-K calc-alkaline melt, the younger Santa Luz complex (ca. 3100 Ma) to the south. Subsequent TTG melts intruded in different phases now exposed as N-S elongated plutons such as Ambrósio (3162 ± 26 Ma), Araci (3072 ± 2 Ma), Requeijão (2989 ± 11 Ma) and others, which together form a major part of the Archaean nucleus. Some of these plutons have what appear to be intrusive, but are probably remobilized, contacts with the Transamazonian Itapicuru greenstone belt. The older gneissic rocks occur as enclaves within younger Archaean plutons. Thus, serial additions of juvenile material over a period of several hundred m.y. led to the formation of a stable micro-continent by 2.9 Ga. Evidence for Neoarchaean activity is found in the inheritance pattern of only one sample, the group 2 Euclides pluton.Group 2 granitoid plutons were emplaced at 2.16–2.13 Ga in a continental arc environment floored by Mesoarchaean crust. These plutons were subsequently deformed and intruded by late to post-tectonic group 3 alkaline plutons. This period of Transamazonian orogeny can be explained as a consequence of ocean closure followed by collision and slab break-off. The only subsequent magmatism was kimberlitic, probably emplaced during the Neoproterozoic Braziliano event, which sampled older zircon from the basement.  相似文献   

18.
The discovery of eclogites is reported within the Great Himalayan Crystalline Complex in the Thongmön area, central Himalaya, and their metamorphic evolution is deciphered by petrographic studies, pseudosection modelling, and zircon dating. For the first time, omphacite has been found in the matrix of eclogites taken from a metamorphic mafic lens. Two groups of garnet have been identified in the Thongmön eclogites on the basis of major and rare earth elements and mineral inclusions. Core and intermediate sections of garnet represent Grt I, in which the major elements (Ca, Mg, and Fe) show a nearly homogenous distribution with little or weak zonation. This Grt I displays an almost flat chondrite‐normalized HREE pattern, and the main inclusions are amphibole, apatite, quartz, and abundant omphacite. Grt II, forms thin rims on large garnet grains, and is characterized by rim‐ward Ca decrease and Mg increase and MREE enrichment relative to HREE and LREE. No amphibole inclusions are found in Grt II, indicating the decomposition of amphibole contributed to its MREE enrichment. Two metamorphic stages, recorded by matrix minerals and inclusions in garnet and zircon, outline the burial of the Thongmön eclogites and progressive metamorphic processes to the pressure peak: (a) the assemblage of amphibole–garnet–omphacite–phengite–rutile–quartz, with the phengite interpreted as having been replaced by Bt+Pl symplectites, represents the prograde amphibole eclogite facies stage M1(1), (b) in the peak eclogite facies [stage M1(2)], amphibole was lost and melting started. Based on the compositions of garnet and omphacite inclusions, M1(1) is constrained to 19–20 kbar and 640–660°C and M1(2) occurred at >21 kbar, >750°C, with appearance of melt and its entrapment in metamorphic zircon. SHRIMP U–Pb dating of zircon from two eclogite samples yielded consistent metamorphic ages of 16.7 ± 0.6 Ma and 17.1 ± 0.4 Ma respectively. The metamorphic zircon grew concurrently with Grt II in the peak eclogite facies. Thongmön eclogites characterized by the prograde metamorphism from amphibolite facies to eclogite facies were formed by the continuing continental subduction of Indian plate beneath the Euro‐Asian continent in the Miocene.  相似文献   

19.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

20.
The Turkel anorthosite Complex (TAC) in the Eastern Ghats Belt in India is composed of anorthosites and leuconorites at the centre and ferrodiorites and quartz diorites at the periphery. Here we report whole‐rock geochemistry, and zircon U–Pb data and REE geochemistry from a co‐spatial ferrodiorite and two quartz diorites from the TAC. The diorites have low abundance of High Field Strength Elements (HFSE) and REE, exhibit a flat chondrite‐normalized pattern with slight LREE enrichment and negligible or no Eu anomaly. Our results show weighted mean 207Pb/206Pb ages of 2433 ± 33 Ma for the ferrodiorite. Two quartz diorite samples from Turkel yield mean207Pb/206Pb ages of 2419 ± 32 Ma and 2505 ± 31 Ma. The zircons from all the analysed samples show high REE contents, prominent HREE enrichment and a conspicuous positive Eu anomaly, suggesting a common magmatic source. The prominent Neoarchaean to early Palaeoproterozoic magmatic ages from the anorthosite complex deviate from the late Neoproterozoic ages reported from other anorthosite suites in the Eastern Ghats Belt, and suggest an active convergent margin along SE India during Archaean–Proterozoic transition. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号