首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type III bursts were observed between 3.5 MHz and 50 kHz by the University of Michigan radio astronomy experiment aboard the OGO-5 satellite.Decay times were measured and then combined with published data ranging up to about 200 MHz. The observed decay times increase with decreasing frequency but at a rate considerably slower than that expected from electron-proton Coulomb collisions. At 50 kHz values differ by about a factor of 100. Using Hartle and Sturrock's solar wind model, Coulomb collisional frequencies were computed and compared with the apparent collisional frequencies deduced from the observations. It was found that the ratio of observed to computed values varies with heliocentric distance according to an inverse 0.71 power. This is similar to an ad hoc function used by Wolff, Brandt, and Southwick to increase the electron-proton collisional energy exchange and make the solar wind theory agree with the measurements of electron and proton temperature near the Earth. These results may provide a clue about the nature of the non-collisional plasma wave damping process responsible for the short duration of type III bursts.  相似文献   

2.
Temperature distribution in the cylindrically symmetric coronal magnetic loop, (i) with constant pressure and (ii) with the pressure varying along the radial distance, of the (a) hotter apex and (b) cooler apex than base is investigated analytically by considering the equilibrium between the heat conduction and radiation loss. If the temperature of the loop does not lie within one of the specified temperature ranges, then the distribution is calculated numerically.The effect of the inclusion of heating due to an external source is studied and found that it increases the length of the loop. On the basis of the observed phenomenon, that the magnetic field varies along the loop, the temperature distribution in the loop is investigated for the loop-geometries proposed by Antiochos and Sturrock (1976). It is concluded that for the larger compression in the area of cross section, the height of the loop decreases.Present investigation shows that no loop with equal apex and base temperatures can exist, but a small variation between the two temperatures supports the existence of the loop, which can be observed in nature.  相似文献   

3.
Faez Bakalian 《Icarus》2007,192(1):302-303
This response is to address some of the comments made by Dr. Fox and also to clarify some points in the Bakalian [2006. Icarus 183, 69-73] and Bakalian and Hartle [2006. Icarus 183, 55-68] papers. It is regrettable that some of the statements in the Bakalian and Bakalian and Hartle papers were misinterpreted.  相似文献   

4.
Sammis  Ian 《Solar physics》1999,189(1):173-179
The avalanche model of Lu and coworkers successfully reproduces important qualitative features of the flare-energy distribution. We test the prediction of the avalanche model that all active regions share a common power-law exponent by using it to derive a local flare-energy distribution from SXR GOES data, then using the convolution proposed by Wheatland and Sturrock to compare it with the global distribution. The local distribution we derive is not consistent with the global distribution, so it appears that active regions do not share a common power-law distribution.  相似文献   

5.
Endeve  Eirik  Leer  Egil 《Solar physics》2001,200(1-2):235-250
In coronal holes the electron (proton) density is low, and heating of the proton gas produces a rapidly increasing proton temperature in the inner corona. In models with a reasonable electron density in the upper transition region the proton gas becomes collisionless some 0.2 to 0.3 solar radii into the corona. In the collisionless region the proton heat flux is outwards, along the temperature gradient. The thermal coupling to electrons is weak in coronal holes, so the heat flux into the transition region is too small to supply the energy needed to heat the solar wind plasma to coronal temperatures. Our model studies indicate that in models with proton heating the inward heat conduction may be so inefficient that some of the energy flux must be deposited in the transition region to produce the proton fluxes that are observed in the solar wind. If we allow for coronal electron heating, the energy that is needed in the transition region to heat the solar wind to coronal temperatures, may be supplied by heat conduction from the corona.  相似文献   

6.
Impulsive heating of the upper chromosphere by a very powerful thermal flux is studied as the cause of hard X-rays during a solar flare. The electron temperature at the boundary between the corona and chromosphere is assumed to change in accordance with the hard X-ray intensity in an elementary flare burst (EFB). A maximum value of about 108 K is reached after 5 s, after which the boundary temperature decreases. These high-temperature changes lead to fast propagation of heat into the chromosphere. Numerical solution of the hydrodynamic equations, which take into account all essential dissipative processes, shows that classical heat conduction is not valid due to heat flux saturation in the case of impulsive heating from a high-temperature source. The saturation effect and hydrodynamic flow along a magnetic field lead to electron temperature and density distributions such that the thermal X-ray spectrum of a high-temperature plasma can be well enough approximated by an exponential law or by two power-law spectra. According to this dissipative thermal model for the source of hard X-rays, the emission measure of the high-temperature plasma increases monotonously during the whole EFB even after the temperature maximum. Some results for the low-temperature region are discussed in connection with short-lived chromospheric bright points.  相似文献   

7.
The thermal balance of the plasma in the night-time mid-latitude F2-region is examined using solutions of the steady-state O+ and electron heat balance equations. The required concentrations and field-aligned velocities are obtained from a simultaneous solution of the time-dependent O+ continuity and momentum equations.The results demonstrate the systematic trend for the O+ temperature to be 10–20 K greater than the electron temperature during the night at around 300 km, as observed at St. Santin by Bauer and Mazaudier. It is shown that frictional heating between the O+ and neutral gases is the cause of the O+ temperature being greater than the electron temperature; the greater the importance of frictional heating in the thermal balance the greater is the difference in the O+ and electron temperatures. A study is made of the roles played in the thermal balance of the plasma by the thermal conductivity of the O+ and electron gases; collisional heat transfer between O+ electrons and neutrals; frictional heating between the O+ and neutral gases; and advection and convection due to field-aligned O+ and electron motions. The results of the study show that, at around 300 km, electron cooling by excitation of the fine structure of the ground state of atomic oxygen plays a major role in the thermal balance of the electrons and, since the temperature of the ions is little affected by this electron cooling process, in determining the difference between the ion and electron temperatures.  相似文献   

8.
In this paper we will show that the twisting mechanism of Sturrock and Uchida is as viable a heating source for the active corona as Parker's braiding. This conclusion contradicts that of Berger (1990). Moreover, we shall show that if we adopt Berger's criterion for reconnection, braiding produces far more flare energy than is observed. A modified criterion, consistent with twisting, produces insufficient heating but, coupled to an avalanche process, could account for active region flares.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   

9.
It is shown that the neglect of radiative losses by Antiochos and Sturrock (1976) in investigating conduction cooling is not justified. It is further shown that the anomalous current dissipation leads to substantial amount of heating contrary to remarks made by Ionson (1982).  相似文献   

10.
When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, thermal energy will be released and heat the crust, increasing crust temperature and changing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evolution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theoretical models(e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is ~0.026 Me V/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts.  相似文献   

11.
We investigate the effect of hydrostatic scale heights lambda(T) in coronal loops on the determination of the vertical temperature structure T&parl0;h&parr0; of the solar corona. Every method that determines an average temperature at a particular line of sight from optically thin emission (e.g., in EUV or soft X-ray wavelengths) of a mutlitemperature plasma is subject to the emission measure-weighted contributions dEM&parl0;T&parr0;&solm0;dT from different temperatures. Because most of the coronal structures (along open or closed field lines) are close to hydrostatic equilibrium, the hydrostatic temperature scale height introduces a height-dependent weighting function that causes a systematic bias in the determination of the temperature structure T&parl0;h&parr0; as function of altitude h. The net effect is that the averaged temperature seems to increase with altitude, dT&parl0;h&parr0;&solm0;dh>0, even if every coronal loop (of a multitemperature ensemble) is isothermal in itself. We simulate this effect with differential emission measure distributions observed by SERTS for an instrument with a broadband temperature filter such as Yohkoh/Soft X-Ray Telescope and find that the apparent temperature increase due to hydrostatic weighting is of order DeltaT approximately T0h&solm0;r middle dot in circle. We suggest that this effect largely explains the systematic temperature increase in the upper corona reported in recent studies (e.g., by Sturrock et al., Wheatland et al., or Priest et al.), rather than being an intrinsic signature of a coronal heating mechanism.  相似文献   

12.
We apply the generalized Lomb–Scargle (LS) periodogram, proposed by Zechmeister and Kurster, to the solar neutrino data from Super-Kamiokande (Super-K) using data from its first five years. For each peak in the LS periodogram, we evaluate the statistical significance in two different ways. The first method involves calculating the False Alarm Probability (FAP) using non-parametric bootstrap resampling, and the second method is by calculating the difference in Bayesian Information Criterion (BIC) between the null hypothesis, viz. the data contains only noise, compared to the hypothesis that the data contains a peak at a given frequency. Using these methods, we scan the frequency range between 7–14 cycles per year to look for any peaks caused by solar rotation, since this is the proposed explanation for the statistically significant peaks found by Sturrock and collaborators in the Super-K dataset. From our analysis, we do confirm that similar to Sturrock et al, the maximum peak occurs at a frequency of 9.42/year, corresponding to a period of 38.75 days. The FAP for this peak is about 1.5% and the difference in BIC (between pure white noise and this peak) is about 4.8. We note that the significance depends on the frequency band used to search for peaks and hence it is important to use a search band appropriate for solar rotation. However, The significance of this peak based on the value of BIC is marginal and more data is needed to confirm if the peak persists and is real.  相似文献   

13.
We have compared solutions obtained from the bi-Maxwellian based 16-moment transport equations with those obtained from the Maxwellian based 13-moment transport equations for conditions leading to the steady state, subsonic flow of a fully-ionized electron-proton plasma along geomagnetic field lines in the vicinity of the plasmapause. The bi-Maxwellian based equations can account for large temperature anisotropies and the flow of both parallel and perpendicular thermal energy, while the Maxwellian based equations account for small temperature anisotropies and only the total heat flow. Our comparison indicates that for Stable Auroral Red arc (SAR-arc) conditions leading to strong field-aligned heat flows (temperatures of 8000 K and temperature gradients of4K. km−1 at 1500 km), the bi-Maxwellian based equations predict a different thermal structure in the topside ionosphere than the less rigorous Maxwellian based equations. In particular, the bi-Maxwellian based equations predict proton and electron temperature anisotropies with T > T, while the Maxwellian based equations predict the opposite behavior for the same boundary conditions. This difference is related to the way in which the temperature anisotropies and heat flows are treated in the two formulations. For the bi-Maxwellian based equations, the inclusion of separate heat flows for parallel and perpendicular thermal energy allows for the development of a pronounced tail in both the electron and proton distribution functions, which leads to temperature anisotropies with T > T. For the Maxwellian based equations, on the other hand, the tail development is restricted because only the total heat flow is considered. Consequently, as the heat flows down, the presence of an increasing magnetic field acts to produce an anisotropy with T > T, and this process dominates tail formation for the Maxwellian based equations.  相似文献   

14.
We compare the performance of two alternative algorithms which aim to construct a force-free magnetic field given suitable boundary conditions. For this comparison, we have implemented both algorithms on the same finite element grid which uses Whitney forms to describe the fields within the grid cells. The additional use of conjugate gradient and multigrid iterations result in quite effective codes. The Grad Rubin and Wheatland Sturrock Roumeliotis algorithms both perform well for the reconstruction of a known analytic force-free field. For more arbitrary boundary conditions the Wheatland Sturrock Roumeliotis approach has some difficulties because it requires overdetermined boundary information which may include inconsistencies. The Grad Rubin code on the other hand loses convergence for strong current densities. For the example we have investigated, however, the maximum possible current density seems to be not far from the limit beyond which a force-free field cannot exist anymore for a given normal magnetic field intensity on the boundary.  相似文献   

15.
Heat transport is considered both for quiet and disturbed solar winds. It is shown that heat may be transferred during solar flares by sharp fronted thermal wave pulses. Energy dissipation in the wave front arises from the firehose instability excitation. The effects of ionosonic turbulence on heat transport in a quiet solar wind are also investigated. A quasi-steady state, in which there is a balance between wave-particle interations and particle collisions is found. It is shown that the effect of wave-particle ‘collisions’ is to produce a significant decrease of the electron heat flow and electron temperature, and increase of the ion temperature relative to calculations which take into account particle particle collisions only.  相似文献   

16.
Short-term periodicities of solar activity were studied. To perform the study, a north-south asymmetry time series was constructed by using the northern and the southern hemisphere flare index values for solar cycle 22. The statistical significance of this time series was calculated. It indicates that in most of cases the asymmetry is highly significant during cycle 22. Power spectral analysis of this time series reveals a periodicity around 25.5 days, which was announced before as a fundamental period of solar activity (Bai and Sturrock, 1991). To investigate the time agreement between the two hemispheres, the phase distribution was studied and a phase shift of about 0.5 was found. An activity trend from the north to the south was found.  相似文献   

17.
The sizes and shapes of X-ray emitting loops brightened by flares and other coronal transients have been derived from the Skylab S-054 photographs. This information has been combined with estimates of temperature and emission measure derived from the photographs and from Solrad data to compute brightness decay times attributable to various coronal energy loss mechanisms. The computed decay times are compared to those actually observed. Examples are presented of the brightness decay of soft X-ray flare kernels, post-flare loops, and the coronal X-ray enhancement asssociated with an H filament disappearance.The computed decay time due to conductive losses is always found to be much more rapid than that due to radiative losses in the corona. However, the observed soft X-ray brightness decay times are always much longer than those computed from conductive cooling.The role of geometrical inhibition of conduction as discussed by Antiochos and Sturrock (1976a) is examined for these events. It is shown that this mechanism might be adequate to account for the observed results in two of the five cases examined, but it is inadequate in the other three. The possible breakdown of classical collisional thermal conductivity (Forslund, 1970) is examined and it is shown that this mechanism is not applicable to the cases presented here. Confirmation of the existence of the very high conductive fluxes predicted by the coronal flare conductive cooling models is sought from EUV and H observations. No evidence is found which unequivocally demonstrates the presence, at lower levels in the atmosphere, of very high conductive fluxes. The soft X-ray results are consistent with the continuation of evaporation driven by thermal conduction (Antiochos and Sturrock, 1976b) late into the decay phase of the event. In this case, no source of continued magnetic energy dissipation after the initial stages of the flare is required to explain the lifetime of the X-ray emitting loops.  相似文献   

18.
孙何雨 《天文学报》2023,64(3):29-117
电子是太阳风粒子中最为重要的组分之一,它可以通过多种机制对太阳风产生影响.太阳风中的电子通常具有温度各向异性和束流两种非热平衡分布特征,这些偏离热平衡分布的特征可以通过波粒相互作用激发电子不稳定性和等离子体波动,激发的等离子体波动又可以通过波粒相互作用调制太阳风粒子的分布,从而加热太阳风中的背景粒子.因此电子动力学不稳定性在太阳风的演化过程中扮演了极为重要的角色.详细介绍了太阳风中常见的电子动力学不稳定性,并基于等离子体动力论,详细介绍太阳风传播过程中所出现的各种不稳定性,尤其是在近日球层和太阳大气区域所出现的电子声热流不稳定性以及低混杂热流不稳定性,并分析其波粒相互作用机制,以便更加深入地研究太阳风传播过程中的电子分布函数演化.  相似文献   

19.
H. J. Fahr 《Solar physics》1973,30(1):193-206
The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose a solution of a tri-fluid model of the solar wind including solar electrons, protons, and -particles, and starting with the boundary conditions of Hartle and Barnes at 0.5 AU is given. On the base of the assumption that suprathermal He+-ions which have four times the temperature of suprathermal protons are predominantly coupled to solar -particles by Alfvén waves, it is shown that the temperature T of solar -particles should be appreciably higher than those T p of solar protons beyond the orbit of the Earth. For 1 AU a temperature excess T over T p according to that which has been found in some solar wind ion spectrograms can only be explained for a small part of the orbit of the earth which is inside the cone of enhanced helium densities. Around 1 AU the temperatures T and T p are found to decrease much slighter with solar distance than given in the two-fluid model of Hartle and Barnes. Beyond 1.7 and 2.2 AU the temperatures T and T p even start increasing with solar distance and come up to about 105 at about 10 AU. These predictions should lend some support to future temperature measurements with deep-space probes reaching Solar distances of some AU.Forschungsberichte des Astronomischen Institutes, Bonn, 72-10.  相似文献   

20.
In this paper we offer a model for the Earth's ionosphere and plasmasphere, allowing for the inertia and anisotropic energy distribution of thermal plasma. A procedure for simultaneous solution of equations of continuity and motion for the O+ and H+ ions, subject to inertia terms, is described. The model also includes transfer equations for longitudinal and transversal thermal energies. The system of simulating equations and the kinetic equation for superthermal electron spectra are concordantly solved along geomagnetic field lines. Within the framework of the model we developed a study is made of the dynamics of filling of the evacuated plasmaspheric reservoir after a magnetospheric disturbance. It is shown that the filling of the tubes offorce with L ? 3.5 proceeds with supersonic speeds during the first several days and the character of filling differs very much from a diffusion-equilibrium one. The spatio-temporal behavior of electron and ion temperature anisotropy that is formed in the process of filling, is considered. It is found that the value of electron anisotropy can be large. A brief analysis is made of the causes of electron and ion temperature anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号