首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.  相似文献   

2.
A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. Our results may be relevant to cosmic relativistic double- layers and relativistic plasma structures involving energetic plasma flows that may occur in space plasmas. Furthermore, they may complement and provide new insights into recently published results (G. Lu et al. in Astrophys. Space Sci., doi:, 2010).  相似文献   

3.
A theoretical investigation has been made of electrostatic solitary structures in an electron-positron-ion (e-p-i) plasma, taking nonextensive electrons and nonextensive positrons. By employing the reductive perturbation method, the basic characteristics of ion-acoustic (IA) solitary waves (SWs) in a three-component e-p-i plasma (consisting of negatively charged nonextensive electrons, positively charged nonextensive positrons, and ions) have been addressed. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations are derived and their numerical solutions are obtained. It has been shown that the combined effects of electron nonextensivity, positron nonextensivity, and ions significantly modify the behavior of these electrostatic solitary structures that have been found to exist with positive and negative potential in this plasma model. The present analysis may be useful to understand and demonstrate the dynamical properties of IA SWs in different astrophysical and cosmological scenarios (viz. stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc.).  相似文献   

4.
Ion-acoustic solitary waves in a warm, magnetized plasma with electron inertia have been investigated through Sagdeev pseudopotential method. It has been established the existence of both compressive supersonic solitons, and rarefactive subsonic and supersonic solitons within the parametric domains. The effect of the external magnetic field for generation of the supersonic compressive solitons of constant amplitudes appears to be passive after some critical direction of propagation of the wave. However, up to the critical direction of propagation, the magnetic resistance is found to be quite active to drastically reduce the soliton amplitudes. The generation of rarefactive solitons in this warm magnetized plasma is rather more feasible to be supersonic without electron inertia.  相似文献   

5.
Properties of propagation of large amplitude dust ion-acoustic solitary waves and double layers are investigated in electron-positron-ion plasma with highly charged negative dust. Sagdeev pseudopotential method has been used to derive the energy balance equation. The expression for the critical Mach number (lower/upper limit) for the existence of solitary structures has also been derived. The Sagdeev pseudopotential is a function of numbers of physical parameters such as ion temperature (σ), positron density (δ p ), dust density (δ d ) and electron to positron temperature ratio (β). These parameters significantly influence the properties of the solitary structures and double layers. Further it is found that both polarity (compressive and rarefactive) solitons and negative potential double layers are observed.  相似文献   

6.
The properties of arbitrary amplitude dust ion-acoustic (DIA) solitary waves (SWs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust is studied by the pseudo-potential approach. The effects of ion temperature, resonant electrons, and dust number density are found to significantly modify the basic features of the DIA-SWs as well modify the parametric regime for the existence of compressive DIA-SWs. The pseudo-potential for small but finite amplitude limit is also analytically analyzed.  相似文献   

7.
We look for particular solutions to the restricted three-body problem where the bodies are allowed to either lose or gain mass to or from a static atmosphere. In the case that all the masses are proportional to the same function of time, we find analogous solution to the five stationary solutions of the usual restricted problem of constant masses: the three collinear and the two triangular solutions, but now the relative distance of the bodies changes with time at the same rate. Under some restrictions, there are also coplanar, infinitely remote and ring solutions.  相似文献   

8.
Using an exact solution of Maxwell's equations and the relativistic equations of motion for electrons and positrons we demonstrate the existence of an electromagnetic wave with a frequency considerably lower that the electron cyclotron frequency. For such a wave the cutoff frequency is determined by the Langmuir frequency and by the wave amplitude. For realistic pulsar parameters a remarkable reduction in the cutoff frequency is then controlled by nonlinear relativistic effects. Modulation instability of this wave is also investigated both analytically and numerically.  相似文献   

9.
We have studied the nonlinear propagation of dust ion-acoustic (DIA) waves in a dusty multi-ion dense plasma (with the constituents being degenerate, either non-relativistic or ultra-relativistic) and the propagation of such waves have been investigated by the reductive perturbation method. From the stationary solution of the Korteweg de-Vries (K-dV) equation and Burgers’ equation the nonlinear waves (specially, solitary and shock waves) have been found to be formed in the dusty plasma system under consideration. It has shown that the basic features of these waves are significantly modified by both the positive and negative ions and dust number densities, the degenerate of the constituents. The implications of our results have been briefly discussed.  相似文献   

10.
《Planetary and Space Science》2007,55(10):1358-1367
Propagation of plasma-acoustic wave has been studied in magnetized plasma contaminated with dust charged grains. It has shown that, because of the configuration of magnetized plasma contaminated with dust charge fluctuation, pseudopotential method fails to derive nonlinear wave equation. We thus exercise an alternate approach to yield wave equation in the form of Sagdeev-like potential equation which enables the success to study the nonlinear waves. Again a modified mathematical formalism known as tanh-method has the merit to evaluate the soliton features in relation to its expectation in space. The method has its success in finding the solitary waves along with other exciting formation of shock-like wave, soliton radiation in soliton propagation. The results have more realistic interpretation in showing explicitly the interaction of magnetic field and impurity caused by dust charge variation.  相似文献   

11.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

12.
Bifurcations of dust acoustic solitary waves and periodic waves in an unmagnetized plasma with q-nonextensive velocity distributed ions are studied through non-perturbative approach. Basic equations are reduced to an ordinary differential equation involving electrostatic potential. After that by applying the bifurcation theory of planar dynamical systems to this equation, we have proved the existence of solitary wave solutions and periodic wave solutions. Two exact solutions of the above waves are derived depending on the parameters. From the solitary wave solution and periodic wave solution, the effect of the parameter (q) is studied on characteristics of dust acoustic solitary waves and periodic waves. The parameter (q) significantly influence the characteristics of dust acoustic solitary and periodic structures.  相似文献   

13.
A parametric survey on the propagation characteristics of the dust ion-acoustic (DIA) shock waves showing the effect of nonextesivity with nonextensive electrons in a dissipative dusty plasma system has been carried out using the reductive perturbation technique. We have considered continuity and momentum equations for inertial ions, q-distributed nonextensive electrons, and stationary charged dust grains, to derive the Burgers equation. It has been found that the basic features of DIA shock waves are significantly modified by the effects of electron nonextensivity and ion kinematic viscosity. Depending on the degree of nonextensivity of electrons, the dust ion-acoustic shock structures exhibit compression and rarefaction. The implications of our results would be useful to understand some astrophysical and cosmological scenarios like stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc., where effects of nonextensivity can play the significant roles.  相似文献   

14.
By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.  相似文献   

15.
Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa distributed) cool and hot electrons have been investigated using non-perturbative approach. We have transformed basic model equations to an ordinary differential equation involving electrostatic potential. Then we have applied the bifurcation theory of planar dynamical systems to the obtained equation and we have proved the existence of solitary wave solutions and periodic wave solutions. We have derived two exact solutions of solitary and periodic waves depending on the parameters. From the solitary wave solution and periodic wave solution, we have shown the effects of density ratio p of cool electrons and ions, spectral index κ, and temperature ratio σ of cool electrons and hot electrons on characteristics of ion acoustic solitary and periodic waves.  相似文献   

16.
A theoretical investigation is carried out for understanding the basic features of oblique propagation of linear and nonlinear ion-acoustic waves subjected to an external magnetic field in an electron-positron-ion plasma which consists of a cold magnetized ion fluid, Boltzmann distributed positron, and electrons obeying a trapped distribution. In the linear regime, two dispersion curves are obtained. It is shown that the positron concentration causes the both modes to propagate with smaller phase velocities. Then, owing to the presence of resonant electrons, the modified Korteweg-de Vries equation describing the nonlinear dynamics of small but finite amplitude ion-acoustic waves is derived. It is found that the effects of external magnetic field (obliqueness), trapped electrons, positron concentration and temperature ratio significantly modify the basic features of solitary waves.  相似文献   

17.
The KdV equation is derived for weakly nonlinear ion-acoustic waves in an unmagnetized warm dusty plasma with electron inertia. It has been shown that the inclusion of electron inertia and pressure variation of the species not only significantly modifies the basic features (width and amplitude) of dust ion-acoustic solitions, but also introduces a new parametric regime for the existence of positive and negative solitons.  相似文献   

18.
Existence and characteristics of ion-acoustic (IA) wave modulation are studied in a plasma with two-temperature electron satisfying kappa distribution. Based on the multiple time scales perturbation, a nonlinear Schrödinger equation (NLS) is derived. Similar to the case of double Maxwellian electrons, both polarities of envelope soliton can exist over restricted ranges of the fractional hot electron density ratio and two-temperature superthermal electrons. The transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in the presence of cool and hot superthermal electrons. It is shown that the small values of the hot electron populations leads to shrinking the modulation instability region. It is also found the instability growth rate reduces due to the presence of hot electrons. The result of present investigation contributes to the physics of wave modulation in Saturn’s magnetosphere where two-temperature electrons with kappa distribution exist.  相似文献   

19.
This article presents the first study of the head-on collision of two ion-acoustic solitary waves (IASWs) in magnetized plasmas with nonextensive electrons and positrons using the extended Poincaré-Lighthill-Kuo (PLK) method. The effects of the ion gyro-frequency to ion plasma frequency ratio, the positron to ion number density ratio, the electrons temperature to positrons temperature ratio, and the nonextensive parameter q on the phase shifts are investigated. It is shown that these factors significantly modify the phase shifts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号