首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Low‐T eclogites in the North Qilian orogen, NW China share a common assemblage of garnet, omphacite, glaucophane, epidote, phengite, quartz and rutile with or without paragonite. Phase relations for the low‐T eclogites can be modelled well in the system NCKFMASHO with the updated solid‐solution models for amphibole and clinopyroxene. Garnet in the eclogite typically exhibits growth zonations in which pyrope increases while grossular somewhat decreases from core to rim, which is modelled as having formed mainly in the PT conditions of lawsonite‐eclogite facies at the pre‐peak stage. Omphacite shows an increase in jadeite component as aegirine and also total FeO decrease in going from the inclusions in garnet to grains in the matrix, and from core to rim of zoned crystals, reflecting an increase in metamorphic PT conditions. Glaucophane exhibits a compositional variation in X(gl) (= Fe2+/(Fe2+ + Mg)) and F(gl) (= Fe3+/(Fe3+ + Al) in M2 site), which decrease from the inclusions in garnet to crystals in the matrix, consistent with an increase in PT conditions. However, for zoned matrix crystals, the X(gl) and F(gl) increase from core to rim, is interpreted to reflect a late‐stage decompression. Using composition isopleths for garnet rim and phengite in PT pseudosections, peak PT conditions for three samples Q5–45, Q5–01 and Q7–28 were estimated as 530–540 °C at 2.10–2.25 GPa, 580–590 °C at 2.30–2.45 GPa and 575–590 °C at 2.50–2.65 GPa, respectively, for the same assemblage garnet + omphacite + glaucophane + lawsonite (+ phengite + quartz + rutile) at the peak stage. The eclogites suggest similar PT ranges to their surrounding felsic–pelitic schists. During post‐peak decompression of the eclogites, the most distinctive change involves the transformation of lawsonite to epidote, releasing large amount of water in the rock. The released fluid promoted further growth of glaucophane at the expense of omphacite and, in appropriate bulk‐rock compositions, paragonite formed. The decompression of eclogite did not lead to pronounced changes in garnet and phengite compositions. Peak PT conditions of the North Qilian eclogite are well constrained using both the average PT and pseudosection approaches in Thermocalc. Generally, the conventional garnet–clinopyroxene geothermometer is too sensitive to be used for constraining the temperature of low‐T eclogite because of the uncertainty in Fe3+ determination in omphacite and slight variations in mineral compositions because of incomplete equilibration.  相似文献   

2.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

3.
Eclogites from the Kebuerte Valley, Chinese South Tianshan, consist of garnet, omphacite, phengite, paragonite, glaucophane, hornblendic amphibole, epidote, quartz and accessory rutile, titanite, apatite and carbonate minerals with occasional presence of coesite or quartz pseudomorphs after coesite. The eclogites are grouped into two: type I contains porphyroblastic garnet, epidote, paragonite and glaucophane in a matrix dominated by omphacite where the proportion of omphacite and garnet is >50 vol.%; and type II contains porphyroblastic epidote in a matrix consisting mainly of fine‐grained garnet, omphacite and glaucophane where the proportion of omphacite and garnet is <50 vol.%. Garnet in both types of eclogites mostly exhibits core–rim zoning with increasing grossular (Xgr) and pyrope (Xpy) contents, but a few porphyroblastic garnet grains in type I eclogite shows core–mantle zoning with increasing Xpy and a slight decrease in Xgr, and mantle–rim zoning with increases in both Xgr and Xpy. Garnet rims in type I eclogite have higher Xpy than in type II. Petrographic observations and phase equilibria modelling with pseudosections calculated using thermocalc in the NCKMnFMASHO system for three representative samples suggest that the eclogites have experienced four stages of metamorphism: stage I is the pre‐peak temperature prograde heating to the pressure peak (Pmax) which was recognized by the garnet core–mantle zoning with increasing Xpy and decreasing Xgr. The PT conditions at Pmax constrained from garnet mantle or core compositions with minimum Xgr content are 29–30 kbar at 526–540 °C for type I and 28.2 kbar at 518 °C for type II, suggesting an apparent thermal gradient of ~5.5 °C km?1. Stage II is the post‐Pmax decompression and heating to the temperature peak (Tmax), which was modelled from the garnet zoning with increasing Xgr and Xpy contents. The PT conditions at Tmax, defined using the garnet rim compositions with maximum Xpy content and the Si content in phengite, are 24–27 kbar at 590 °C for type I and 22 kbar at 540 °C for type II. Stage III is the post‐Tmax isothermal decompression characterized by the decomposition of lawsonite, which may have resulted in the release of a large amount of fluid bound in the rocks, leading to the formation of epidote, paragonite and glaucophane porphyroblasts. Stage IV is the late retrograde evolution characterized by the overprint of hornblendic amphibole in eclogite and the occurrence of epidote–amphibole facies mineral assemblages in the margins or in the strongly foliated domains of eclogite blocks due to fluid infiltration. The PT estimates obtained from conventional garnet–clinopyroxene–phengite thermobarometry for the Tianshan eclogites are roughly consistent with the P–T conditions of stage II at Tmax, but with large uncertainties in temperature. On the basis of these metamorphic stages or P–T paths, we reinterpreted that the recently reported zircon U–Pb ages for eclogite may date the Tmax stage or the later decompression stage, and the widely distributed (rutile‐bearing) quartz veins in the eclogite terrane may have originated from the lawsonite decomposition during the decompression stage rather than from the transition from blueschist to eclogite as previously proposed.  相似文献   

4.
In the Chinese southwestern Tianshan (U)HP belt, former lawsonite presence has been predicted for many (U)HP metamorphic eclogites, but only a very few lawsonite grains have been found so far. We discovered armoured lawsonite relicts included in quartz, which, on its part, is enclosed in porphyroblastic garnet in an epidote eclogite H711‐14 and a paragonite eclogite H711‐29. H711‐14 is mainly composed of garnet, omphacite, epidote and titanite, with minor quartz, paragonite and secondary barroisite and glaucophane. Coarse‐grained titanite occasionally occurs in millimetre‐wide veins in equilibrium with epidote and omphacite, and relict rutile is only preserved as inclusions in matrix titanite and garnet. H711‐29 shows the mineral assemblage of garnet, omphacite, glaucophane, paragonite, quartz, dolomite, rutile and minor epidote. Dolomite and rutile are commonly rimed by secondary calcite and titanite respectively. Porphyroblastic garnet in both eclogites is compositionally zoned and exhibits an inclusion‐rich core overgrown by an inclusion‐poor rim. Phase equilibria modelling predicts that garnet cores formed at the P‐peak (490–505 °C and 23–25.5 kbar) and coexisted with the lawsonite eclogite facies assemblage of omphacite + glaucophane + lawsonite + quartz. Garnet rims (550–570 °C and ~20 kbar) grew subsequently during a post‐peak epidote eclogite facies metamorphism and coexisted with omphacite + quartz ± glaucophane ± epidote ± paragonite. The results confirm the former presence of a cold subduction zone environment in the Chinese southwestern Tianshan. The P–T evolution of the eclogites is characterized by a clockwise P–T path with a heating stage during early exhumation (thermal relaxation). The preservation of lawsonite in these eclogites is attributed to isolation from the matrix by quartz and rigid garnet, which should be considered as a new type of lawsonite preservation in eclogites. The complete rutile–titanite transition in H711‐14 took place in the epidote eclogite facies stage in the presence of an extremely CO2‐poor fluid with X(CO2) [CO2/(CO2 + H2O) in the fluid] <<0.008. In contrast, the incomplete rutile–titanite transition in H711‐29 may have occurred after the epidote eclogite facies stage and the presence of dolomite reflects a higher X(CO2) (>0.01) in the coexisting fluid at the epidote eclogite facies stage.  相似文献   

5.
Abstract The garnet blueschists from the Ile de Groix (Armorican Massif, France) contain millimetre‐ to centimetre‐sized pseudomorphs consisting of an aggregate of chlorite, epidote and paragonite. The pseudomorphed phase developed at a late stage of the deformation history, because it overgrows a glaucophane–epidote–titanite foliation. Garnet growth occurred earlier than the beginning of the ductile deformation, and thus garnet is also included in the pseudomorphs. Microprobe analyses show that garnet is strongly zoned, with decreasing spessartine and increasing almandine and pyrope contents from core to rim. Grossular content is higher in garnet cores (about 35 mole%) compared to garnet rims (about 30 mole%). Blue amphibole has glaucophane compositions with a low Fe3+ content and become more magnesian when inclusions in garnet (XMg = 0.62–0.65) are compared with matrix grains (XMg = 0.67–0.70). Matrix epidote has a pistacite content of about 50 mole%. On the basis of their shape and the nature of the breakdown products, the pseudomorphs are attributed to lawsonite. A numerical model (using Thermocalc ) has been developed in order to understand the reactions controlling both the growth and the breakdown of lawsonite. Lawsonite growth could have taken place through the continuous hydration reaction Chl + Ep + Pg + Qtz + Vap = Gln + Lws, followed by the fluid‐absent reaction Chl + Ep + Pg = Grt + Gln + Lws. Peak P–T conditions are estimated at about 18–20 kbar, 450 °C. This indicates that lawsonite growth took place at increasing P and T, hence can be used as a geobarometer in the buffering assemblage garnet–glaucophane–epidote. The final part of the history is recorded by lawsonite breakdown, after cessation of the ductile deformation, and recording the earliest stages of the exhumation.  相似文献   

6.
Coexisting garnet blueschist and eclogite from the Chinese South Tianshan high‐pressure (HP)–ultrahigh‐pressure (UHP) belt consist of similar mineral assemblages involving garnet, omphacite, glaucophane, epidote, phengite, rutile/sphene, quartz and hornblendic amphibole with or without paragonite. Eclogite assemblages generally contain omphacite >50 vol.% and a small amount of glaucophane (<5 vol.%), whereas blueschist assemblages have glaucophane over 30 vol.% with a small amount of omphacite which is even absent in the matrix. The coexisting blueschist and eclogite show dramatic differences in the bulk‐rock compositions with higher X(CaO) [=CaO/(CaO + MgO + FeOtotal + MnO + Na2O)] (0.33–0.48) and lower A/CNK [=Al2O3/(CaO + Na2O + K2O)] (0.35–0.56) in eclogite, but with lower X(CaO) (0.09–0.30) and higher A/CNK (0.65–1.28) in garnet blueschist. Garnet in both types of rocks has similar compositions and exhibits core–rim zoning with increasing grossular and pyrope contents. Petrographic observations and phase equilibria modelling with pseudosections calculated using thermocalc in the NCKMnFMASHO system for the coexisting garnet blueschist and eclogite samples suggest that the two rock types share similar P–T evolutional histories involving a decompression with heating from the Pmax to the Tmax stage and a post‐Tmax decompression with slightly cooling stage, and similar P–T conditions at the Tmax stage. The post‐Tmax decompression is responsible for lawsonite decomposition, which results in epidote growth, glaucophane increase and omphacite decrease in the blueschist, or in an overprinting of the eclogitic assemblage by a blueschist assemblage. Calculated P–X(CaO), P–A/CNK and P–X(CO2) pseudosections indicate that blueschist assemblages are favoured in rocks with lower X(CaO) (<0.28) and higher A/CNK (>0.75) or fluid composition with higher X(CO2) (>0.15), but eclogite assemblages preferentially occur in rocks with higher X(CaO) and lower A/CNK or fluid composition with lower X(CO2). Moreover, phase modelling suggests that the coexistence of blueschist and eclogite depends substantially on P–T conditions, which would commonly occur in medium temperatures of 500–590 °C under pressures of ~17–22 kbar. The modelling results are in good accordance with the measured bulk‐rock compositions and modelled temperature results of the coexisting garnet blueschist and eclogite from the South Tianshan HP–UHP belt.  相似文献   

7.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   

8.
The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes, mostly barroisite. Opinions on the peak metamorphic P-T condition, PT path and mineral paragenesis of it are still in dispute. Generally, HP eclogite involves garnet, omphacite, hornblendes and quartz, with or without glaucophane, zoisite and phengite. The garnet has compositional zoning with XMg increase, XCa and XMn decrease from core to rim, which indicates a progressive metamorphism. The phase equilibria of the HP eclogite modeled by the P-T pseudosection method developed recently showed the following: (1) the growth zonation of garnet records a progressive metamorphic PT path from pre-peak condition of 1.9–2.1 GPa at 508°C–514°C to a peak one of 2.3–2.5 GPa at 528°C–531°C for the HP eclogite; (2) the peak mineral assemblage is garnet+omphacite+glaucophane+quartz±phengite, likely paragenetic with lawsonite; (3) the extensive hornblendes derive mainly from glaucophane, partial omphacite and even a little garnet due to the decompression with some heating during the post-peak stage, mostly representing the conditions of about 1.4–1.6 GPa and 580°C–640°C, and their growth is favored by the dehydration of lawsonite into zoisite or epidote, but most of the garnet, omphacite or phengite in the HP eclogite still preserve their compositions at peak condition, and they are not obviously equilibrious with the hornblendes.  相似文献   

9.
The Sivrihisar Massif, Turkey, is comprised of blueschist and eclogite facies metasedimentary and metabasaltic rocks. Abundant metre‐ to centimetre‐scale eclogite pods occur in blueschist facies metabasalt, marble and quartz‐rich rocks. Sivrihisar eclogite contains omphacite + garnet + phengite + rutile ± glaucophane ± quartz + lawsonite and/or epidote. Blueschists contain sodic amphibole + garnet + phengite + lawsonite and/or epidote ± omphacite ± quartz. Sivrihisar eclogite and blueschist have similar bulk composition, equivalent to NMORB, but record different P–T conditions: ~26 kbar, 500 °C (lawsonite eclogite); 18 kbar, 600 °C (epidote eclogite); 12 kbar, 380 °C (lawsonite blueschist); and 15–16 kbar, 480–500 °C (lawsonite‐epidote blueschist). Pressures for the Sivrihisar lawsonite eclogite are among the highest reported for this rock type, which is rarely exposed at the Earth's surface. The distribution and textures of lawsonite ± epidote define P–T conditions and paths. For example, in some lawsonite‐bearing rocks, epidote inclusions in garnet and partial replacement of matrix epidote by lawsonite suggest an anticlockwise P–T path. Other rocks contain no epidote as inclusions or as a matrix phase, and were metamorphosed entirely within the lawsonite stability field. Results of the P–T study and mapping of the distribution of blueschists and eclogites in the massif suggest that rocks recording different maximum P–T conditions were tectonically juxtaposed as kilometre‐scale slices and associated high‐P pods, although all shared the same exhumation path from ~9–11 kbar, 300–400 °C. Within the tectonic slices, alternating millimetre–centimetre‐scale layers of eclogite and blueschist formed together at the same P–T conditions but represent different extents of prograde reaction controlled by strain partitioning or local variations in fO2 or other chemical factors.  相似文献   

10.
Eclogites from the south Tianshan, NW China are grouped into two types: glaucophane and hornblende eclogites, composed, respectively, of garnet + omphacite + glaucophane + paragonite + epidote + quartz and garnet + omphacite + hornblende (sensu lato) + paragonite + epidote + quartz, plus accessory rutile and ilmenite. These eclogites are diverse both in mineral composition and texture not only between the two types but also among the different selected samples within the glaucophane eclogite. Using thermocalc 3.1 and recent models of activity–composition relation for minerals, a PT projection and a series of P–T pseudosections for specific samples of eclogite have been calculated in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O (NCFMASH) with quartz and water taken to be in excess. On the basis of these phase diagrams, the phase relations and P–T conditions are well delineated. The three selected samples of glaucophane eclogite AK05, AK11 and AK17 are estimated to have peak P–T conditions, respectively, of 540–550 °C at c. 16 kbar, c. 560 °C at 15–17 kbar and c. 580 °C at 15–19 kbar, and two samples of hornblende eclogite AK10 and AK30 of 610–630 °C and 17–18 kbar. Together with H2O‐content contours in the related P–T pseudosections and textural relations, both types of eclogite are inferred to show clockwise P–T paths, with the hornblende eclogite being transformed from the glaucophane eclogite assemblage dominantly through increasing temperature.  相似文献   

11.
The Chinese western Tianshan high-pressure/low-temperature (HP–LT) metamorphic belt, which extends for about 200 km along the South Central Tianshan suture zone, is composed of mainly metabasic blueschists, eclogites and greenschist facies rocks. The metabasic blueschists occur as small discrete blocks, lenses, bands, laminae or thick beds in meta-sedimentary greenschist facies country rocks. Eclogites are intercalated within blueschist layers as lenses, laminae, thick beds or large massive blocks (up to 2 km2 in plan view). Metabasic blueschists consist of mainly garnet, sodic amphibole, phengite, paragonite, clinozoisite, epidote, chlorite, albite, accessory titanite and ilmenite. Eclogites are predominantly composed of garnet, omphacite, sodic–calcic amphibole, clinozoisite, phengite, paragonite, quartz with accessory minerals such as rutile, titanite, ilmenite, calcite and apatite. Garnet in eclogite has a composition of 53–79 mol% almandine, 8.5–30 mol% grossular, 5–24 mol% pyrope and 0.6–13 mol% spessartine. Garnet in blueschists shows similar composition. Sodic amphiboles include glaucophane, ferro-glaucophane and crossite, whereas the sodic–calcic amphiboles mainly comprise barroisite and winchite. The jadeite content of omphacite varies from 35–54 mol%. Peak eclogite facies temperatures are estimated as 480–580 °C for a pressure range of 14–21 kbar. The conditions of pre-peak, epidote–blueschist facies metamorphism are estimated to be 350–450 °C and 8–12 kbar. All rock types have experienced a clockwise PT path through pre-peak lawsonite/epidote-blueschist to eclogite facies conditions. The retrograde part of the PT path is represented by the transition of epidote-blueschist to greenschist facies conditions. The PT path indicates that the high-pressure rocks formed in a B-type subduction zone along the northern margin of the Palaeozoic South Tianshan ocean between the Tarim and Yili-central Tianshan plates.  相似文献   

12.
High-grade exotic blocks in the Franciscan Complex at Jenner, California, show evidence for polydeformation/metamorphism, with eight distinct stages. Two parallel sets of mineral assemblages [(E) eclogite, and (BS) laminated blueschist] representing different bulk chemistry were identified. Stage 1, recorded by parallel aligned inclusions (S1) of crossite + omphacite + epidote + ilmenite + titanite + quartz (E), and glaucophane + actinolite + epidote + titanite (BS) in the central parts of zoned garnets, represents the epidote blueschist facies. The onset of a second stage (stage 2) is represented by a weak crenulation of S1 and growth of garnet. This stage develops a well-defined S2 foliation of orientated barroisite + epidote + titanite (E), or subcalcic actinolite + epidote + titanite (BS) at c. 90d? to S1, with syntectonic growth of garnet, defining the (albite-)epidote-amphibolite facies. A third stage, with aligned inclusions of glaucophane + (subcalcic) actinolite + phengite parallel to S2 in the outermost rims of large garnet grains, is assigned to the transitional (albite-)epidote-amphibolite/(garnet-bearing) epidote blueschist facies. The fourth stage represents the peak metamorphism, and was identified by unorientated matrix minerals in the least retrograded samples. In this stage the mineral assemblages garnet + omphacite + glaucophane + phengite (E) and garnet + winchite + phengite + epidote (BS) both represent the eclogite facies. Stage 5 is represented by the retrogression of eclogite facies assemblages to the epidote blueschist facies assemblages crossite/glaucophane + garnet + omphacite + epidote + phengite (E), and glaucophane + actinolite + epidote + phengite (BS), with the development of an S5 foliation subparallel to S2. Stage 6 represents a crenulation of S5, with the development of a well-defined S6 crenulation cleavage wrapping around relics of the eclogite facies assemblages. This crenulation cleavage is further weakly crenulated during a D7 event. Post-D7 (stage 8) is recorded by the growth of lawsonite + chlorite ± actinolite replacing garnet, and by veins of lawsonite + pumpellyite + aragonite and phengite + apatite. The different, yet coeval, mineral parageneses observed in rock types (E) and (BS) are probably due to differences in bulk chemistry. The metamorphic evolution from stage 1 to stage 8 seems to have been broadly continuous, following an anticlockwise P-Tpath: (1) epidote blueschist (garnet-free) to (2) (albite-)epidote-amphibolite to (3) transitional epidote blueschist (garnet-bearing)/(albite-)epidote-amphibolite to (4) eclogite to (5) epidote blueschist (garnet-bearing) to (6-7) epidote blueschist (garnet-free) facies to (8) lawsonite + pumpellyite + aragonite-bearing assemblages. This anticlockwise P-T path may have resulted from a decreasing geothermal gradient with time in the Mesozoic subduction zone of California at early or pre-Franciscan metamorphism.  相似文献   

13.
Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite‐bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite‐bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na‐Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi‐phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet‐clinopyroxene thermometry yields peak temperatures of 420–520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P–T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4–2.7 GPa and 470–510 °C. Modelled modal abundances of major minerals along a 5 °C km?1 geothermal gradient suggests two critical dehydration processes at ~430 and ~510 °C respectively. Computed garnet composition patterns are in good agreement with measured core‐rim profiles. The petrological study of coesite‐bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP‐LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP‐LT assemblages at most localities.  相似文献   

14.
Robust quantification of pressure (P)–temperature (T) paths for subduction-related HP/UHP metamorphic rocks is fundamental in recognizing spatial changes in both the depth of detachment from the down-going plate and the thermal evolution of convergent margin sutures in orogenic belts. Although the Chinese southwestern (SW) Tianshan is a well-known example of an accretionary metamorphic belt in which HP/UHP metabasites occur in voluminous host metasedimentary schists, information about the P–T evolution of these rocks in the eastern segment is limited, precluding a full understanding of the development of the belt as a whole. In this study at Kekesu in the eastern segment of the SW Tianshan, we use microstructural evidence and phase equilibrium modelling to quantify the peak and retrograde P–T conditions from two lawsonite-bearing micaschists and an enclosed garnet–epidote blueschist; for two of the samples we also constrain the late prograde P–T path. In the two micaschist samples, relics of prograde lawsonite are preserved in quartz inclusions in garnet, whereas in the metabasite, polymineralic aggregates included in garnet are interpreted as pseudomorphs after lawsonite. For garnet micaschist TK21, which is mainly composed of garnet, phengite/paragonite, albite, chlorite, quartz and relict lawsonite, with accessary rutile, titanite and ilmenite, the maximum P–T conditions for the peak stage are 18.0–19.0 kbar at 480–485°C. During initial exhumation, the retrograde P–T path passed through metamorphic conditions of 15.0–17.0 kbar at 460–500°C. For garnet–glaucophane micaschist TK33, which is mainly composed of garnet, glaucophane, phengite/paragonite, albite, chlorite, quartz, relict lawsonite and minor epidote, with accessary titanite, apatite, ilmenite and zircon, the maximum P conditions for the peak stage are >24.0 kbar at 400–500°C. During exhumation, the P–T path passed through metamorphic conditions of 17.5–18.5 kbar at 485–495°C and 14.0–17.5 kbar at 460–500°C. For garnet–epidote blueschist TK37, which is mainly composed of garnet, glaucophane, epidote, phengite, chlorite, albite and quartz, with accessary titanite, apatite, ilmenite, zircon and calcite, the prograde evolution passed through metamorphic conditions of ~20.0 kbar at ~445°C to Pmax conditions of ~21.5 kbar at 450–460°C and Tmax conditions of 19.5–21.0 kbar at 490–520°C. During exhumation, the rock passed through metamorphic conditions of 17.5–19.0 kbar at 475–500°C, before recording P–T conditions of <17.5 kbar at <500°C. These results demonstrate that maximum recorded pressures for individual samples vary by as much as 6 kbar in the eastern segment of the SW Tianshan, which may suggest exhumation from different depths in the subduction channel. Furthermore, the three samples record similar P–T paths from ~17.0 to 15.0 kbar, which suggests they were juxtaposed at a similar depth along the subduction interface. We compare our new results with published information from eclogites in the same area before considering the wider implications of these data for the orogenic development of the belt as a whole.  相似文献   

15.
Tectonic slices and lenses of eclogite within mafic and ultramafic rocks of the Early Cretaceous–Eocene Naga Hills ophiolite were studied to constrain the physical conditions of eastward subduction of the Indian plate under the Burma microplate and convergence rate prior to the India–Eurasia collision. Some of the lenses are composed of eclogite, garnet-blueschist, glaucophanite and greenschist from core to margin, representing a retrograde hydrothermal alteration sequence. Barroisite, garnet, omphacite and epidote with minor chlorite, phengite, rutile and quartz constitute the peak metamorphic assemblage. In eclogite and garnet-blueschist, garnet shows an increase in Mg and Fe and decrease in Mn from core to rim. In chlorite in eclogite, Mg increases from core to rim. Inclusions of epidote, glaucophane, omphacite and quartz in garnet represent the pre-peak assemblage. Glaucophane also occurs profusely at the rims of barroisite. The matrix glaucophane and epidote represent the post-peak assemblage. The Fe3+ content of garnet-hosted omphacite is higher than that of matrix omphacite, and Fe3+ increases from core to rim in matrix glaucophane. Albite occurs in late stage veins. P – T pseudosection analysis indicates that the Naga Hills eclogites followed a clockwise P – T path with prograde metamorphism beginning at ∼1.3 GPa/525 °C and peaking at 1.7–2.0 GPa/580–610 °C, and subsequent retrogression to ∼1.1 GPa/540 °C. A comparison of these P – T conditions with numerical thermal models of plate subduction indicates that the Naga Hills eclogites probably formed near the top of the subducting crust with convergence rates of ∼ 55–100 km Myr−1, consistent with high pre-collision convergence rates between India and Eurasia.  相似文献   

16.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   

17.
This paper presents new petrologic data for high-pressure, low-temperature (HP–LT) metamorphic rocks at Juisui. We reinterpret the so-called “Tamayen block” (Yang and Wang, 1985) or “Juisui block” (Liou, 1981, Beyssac et al., 2008) as a tectonic mélange. It is not a coherent sheet but rather a mixture dominated by greenschist and pelitic schist with pods of serpentinite, epidote amphibolite, and rare blueschist. Four types of glaucophane-bearing rocks are newly recognized in this mélange. Type I is in contact with greenschist lacking glaucophane and garnet. Glaucophane is present only as rare inclusions within pargasite. This type records metamorphic evolution from epidote blueschists-, epidote amphibolite-, to greenschist-facies. Type II contains characteristic zoned amphiboles from barroisite core to Mg-katophorite mantle and glaucophane rim, implying an epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Type III includes winchite and indicates PT conditions of about 6–8 kbar, approaching 400 °C. Type IV contains paragonite but lacks garnet; amphibole shows a Na–Ca core surrounded by a glaucophane rim. This type shows a high-pressure (?) epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Amphibole zoning trends and mineral assemblages imply contradictory PT paths for the four types of glaucophane-bearing rocks—consistent with the nature of a tectonic mélange. The new PT constraints and petrologic findings differ from previous studies (Liou et al., 1975, Beyssac et al., 2008).  相似文献   

18.
Lawsonite eclogites are crucial to decipher material recycling along a cold geotherm into the deep Earth and orogenic geodynamics at convergent margins. However, their tectono‐metamorphic role and record especially at ultrahigh‐pressure (UHP) conditions are poorly known due to rare exposure in orogenic belts. In a ~4 km long cross‐section in Muzhaerte, China, at the western termination of the HP‐UHP metamorphic belt of western Tianshan, metabasite blocks contain omphacite and lawsonite inclusions in porphyroblastic garnet, although matrix assemblages have been significantly affected by overprinting at shallower structural levels. Two types of lawsonite eclogites occur in different parts of the section and are distinguished based on inclusion assemblages in garnet: Type 1 (UHP) with the peak equilibrium assemblage garnet+omphacite±jadeite+lawsonite+rutile+coesite±chlorite±glaucophane and Type 2 (HP) with the assemblage garnet+omphacite±diopside+lawsonite+titanite+quartz±actinolite±chlorite+glaucophane. Pristine coesite and lawsonite and their pseudomorphs in Type 1 are present in the mantle domains of zoned garnet, indicative of a coesite‐lawsonite eclogite facies. Regardless of grain size and zoning profiles, garnet with Type 1 inclusions systematically shows higher Mg and lower Ca contents than Type 2 (prp4–25grs13–24 and prp1–8grs20–45 respectively). Phase equilibria modelling indicates that the low‐Ca garnet core and mantle of Type 1 formed at UHP conditions and that there was a major difference in peak pressures (i.e., maximum return depth) between the two types (2.8–3.2 GPa at 480–590°C and 1.3–1.85 GPa at 390–500°C respectively). Scattered exposures of Type 1 lawsonite eclogite is scatteredly exposed in the north of the Muzhaerte section with a structural thickness of ~1 km, whereas Type 2 occurs throughout the rest of the section. We conclude from this regular distribution that they were derived from two contrasting units that formed along two different geothermal systems (150–200°C/GPa for the northern UHP unit and 200–300°C/GPa for the southern HP unit), with subsequent stacking of UHP and HP slices at a kilometre scale.  相似文献   

19.
Lawsonite is an important hydrous mineral that is stable at low‐temperature (LT) and high‐ to ultrahigh‐pressure (HP–UHP) conditions in subducted slabs. The occurrence/absence of lawsonite in eclogite is a significant constraint for the construction of the metamorphic, tectonic and fluid/melt evolution histories of an HP–UHP terrane. However, lawsonite is very rarely preserved in natural eclogites, and accurate judgment of its former existence is a significant challenge for petrologists. At present, whether lawsonite has ever existed in lawsonite‐absent eclogite is mainly judged by (i) pseudomorphs after lawsonite, and (ii) phase equilibria modelling. In this study, major element and trace‐element distributions in multistage minerals were examined in the Ganghe lawsonite‐absent UHP eclogite in the Dabie UHP terrane, eastern China. This work demonstrates that the whole‐rock Sr and light rare earth elements (LREEs) are mainly dominated by epidote; other minerals (garnet, omphacite, quartz, kyanite, barroisite, phengite and accessory minerals) play a very limited role in the Sr and LREEs budgets. Two stages of epidote, which have noticeably different Sr and LREEs contents, were recognized in the eclogite: (i) Epidote porphyroblasts (Ep‐P core), which are suspected to be the pseudomorphic mineral after lawsonite, contain significantly high Sr (7200–10 300 ppm) and LREEs (160–1300 ppm for La). (ii) An earlier stage epidote (Ep‐In core) occurs as inclusions in matrix omphacite, or in omphacite inclusions in the suspected pseudomorphic minerals after lawsonite (SPMAL); this early epidote has significantly lower Sr (990–1890 ppm, average 1495 ppm, n = 17) and LREEs contents (60–110 ppm for La, average 91 ppm, n = 17). All of the existing early‐stage minerals predating the SPMAL have very low contents of Sr and LREEs, and the total amounts of these elements in the early‐stage minerals do not balance those in the SPMAL. This indicates that a missing Ca‐, Al‐, Sr‐ and LREE‐rich mineral, which was previously in equilibrium with the early‐stage minerals, likely existed in the Ganghe eclogite. On the basis of the mineral geochemistry and phase equilibria modelling, we confirm that the missing mineral cannot be anything but lawsonite. This study indicates that examining the mass (im)balance of Sr and LREEs between multistage HP–UHP epidote can be used as a potential method to confirm the previous existence of lawsonite in lawsonite‐absent eclogite.  相似文献   

20.
Integrated petrological and structural investigations of eclogites from the eclogite zone of the Voltri Massif (Ligurian Alps) have been used to reconstruct a complete Alpine P–T deformation path from burial by subduction to subsequent exhumation. The early metamorphic evolution of the eclogites has been unravelled by correlating garnet zonation trends with the chemical variations in inclusions found in the different garnet domains. Garnet in massive eclogites displays typical growth zoning, whereas garnet in foliated eclogites shows rim‐ward resorption, likely related to re‐equilibration during retrogressive evolution. Garnet inclusions are distinctly different from core to rim, consisting primarily of Ca‐, Na/Ca‐amphibole, epidote, paragonite and talc in garnet cores and of clinopyroxene ± talc in the outer garnet domains. Quantitative thermobarometry on the inclusion assemblages in the garnet cores defines an initial greenschist‐to‐amphibolite facies metamorphic stage (M1 stage) at c. 450–500 °C and 5–8 kbar. Coexistence of omphacite + talc + katophorite inclusion assemblage in the outer garnet domains indicate c. 550 °C and 20 kbar, conditions which were considered as minimum P–T estimates for the M2 eclogitic stage. The early phase of retrograde reactions is polyphase and equilibrated under epidote–blueschist facies (M3 stage), characterized by the development of composite reaction textures (garnet necklaces and fluid‐assisted Na‐amphibole‐bearing symplectites) produced at the expense of the primary M2 garnet‐clinopyroxene assemblage. The blueschist retrogression is contemporaneous with the development of a penetrative deformation (D3) that resulted in a non‐coaxial fabric, with dominant top‐to‐the‐N sense of shear during rock exhumation. All of that is overprinted by a texturally late amphibolite/greenschist facies assemblages (M4 & M5 stages), which are not associated with a penetrative structural fabric. The combined P–T deformation data are consistent with an overall counter‐clockwise path, from the greenschist/amphibolite, through the eclogite, the blueschist to the greenschist facies. These new results provide insights into the dynamic evolution of the Tertiary oceanic subduction processes leading to the building up of the Alpine orogen and the mechanisms involved in the exhumation of its high‐pressure roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号