首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A chironomid–July air temperature inference model based on chironomid assemblages in the surface sediments of 81 Swiss lakes was used to reconstruct Late Glacial July air temperatures at Lac Lautrey (Jura, Eastern France). The transfer‐function was based on weighted averaging–partial least squares (WA‐PLS) regression and featured a leave‐one‐out cross‐validated coefficient of determination (r2) of 0.80, a root mean square error of prediction (RMSEP) of 1.53 ° C, and was applied to a chironomid record consisting of 154 samples covering the Late Glacial period back to the Oldest Dryas. The model reconstructed July air temperatures of 11–12 ° C during the Oldest Dryas, increasing temperatures between 14 and 16.5 ° C during the Bølling, temperatures around 16.5–17.0 ° C for most of the Allerød, temperatures of 14–15 ° C during the Younger Dryas and temperatures of ca. 16.5 ° C during the Preboreal. The Lac Lautrey record features a two‐step July air temperature increase after the Oldest Dryas, with an abrupt temperature increase of ca. 3–3.5 ° C at the Oldest Dryas/Bølling transition followed by a more gradual warming between ca. 14 200 and 13 700 BP. The transfer‐function reconstructs a less rapid cooling at the Allerød/Younger Dryas transition than other published records, possibly an artefact caused by the poor analogue situation during the earliest Younger Dryas, and an abrupt warming at the Younger Dryas/Holocene transition. During the Allerød, two centennial‐scale 1.5–2.0 ° C coolings are apparent in the record. Although chronologically not well constrained, the first of these cold events may be synchronous with the beginning of the Gerzensee Oscillation. The second is inferred just before deposition of the Laachersee tephra at Lac Lautrey and is therefore coeval with the end of the Gerzensee Oscillation. In contrast to the Greenland oxygen isotope records, the Lac Lautrey palaeotemperature reconstruction lacks a clearly defined Greenland Interstadial (GI) event 1d and the decreasing temperature trend during the Bølling/Allerød Interstadial. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The sediment core NP05‐71GC, retrieved from 360 m water depth south of Kvitøya, northwestern Barents Sea, was investigated for the distribution of benthic and planktic foraminifera, stable isotopes and sedimentological parameters to reconstruct palaeoceanographic changes and the growth and retreat of the Svalbard–Barents Sea Ice Sheet during the last ~16 000 years. The purpose is to gain better insight into the timing and variability of ocean circulation, climatic changes and ice‐sheet behaviour during the deglaciation and the Holocene. The results show that glaciomarine sedimentation commenced c. 16 000 a BP, indicating that the ice sheet had retreated from its maximum position at the shelf edge around Svalbard before that time. A strong subsurface influx of Atlantic‐derived bottom water occurred from 14 600 a BP during the Bølling and Allerød interstadials and lasted until the onset of the Younger Dryas cooling. In the Younger Dryas cold interval, the sea surface was covered by near‐permanent sea ice. The early Holocene, 11 700–11 000 a BP, was influenced by meltwater, followed by a strong inflow of highly saline and chilled Atlantic Water until c. 8600 a BP. From 8600 to 7600 a BP, faunal and isotopic evidence indicates cooling and a weaker flow of the Atlantic Water followed by a stronger influence of Atlantic Water until c. 6000 a BP. Thereafter, the environment generally deteriorated. Our results imply that (i) the deglaciation occurred earlier in this area than previously thought, and (ii) the Younger Dryas ice sheet was smaller than indicated by previous reconstructions.  相似文献   

4.
We present a Lateglacial and early Holocene chironomid‐based July air temperature reconstruction from Foppe (1470 m a.s.l.) in the Swiss Southern Alps. Our analysis suggests that chironomid assemblages have responded to major and minor climatic fluctuations during the past 17 000 years, such as the Oldest Dryas, the Younger Dryas and the Bølling/Allerød events in the Lateglacial and the Preboreal Oscillation at the beginning of the Holocene. Quantitative July air temperature estimates were produced by applying a combined Norwegian and Swiss temperature inference model consisting of 274 lakes to the fossil chironomid assemblages. The Foppe record infers average July air temperatures of ca. 9.9 °C during the Oldest Dryas, 12.2 °C during most of the Bølling/Allerød and 11.1 °C for the Younger Dryas. Mean July air temperatures during the Preboreal were 14 °C. Major temperature changes were observed at the Oldest Dryas/Bølling (+2.7 °C), the Allerød/Younger Dryas (?2 °C) and the Younger Dryas/Holocene transitions (+3.9 °C). The temperature reconstruction also shows centennial‐scale coolings of ca. 0.8–1.4 °C, which may be synchronous with the Aegelsee (Greenland Interstadial 1d) and the Preboreal Oscillations. A comparison of our results with other palaeoclimate records suggests noticeable temperature gradients across the Alps during the Lateglacial and early Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The late‐glacial Bølling period was first identified by Johs. Iversen on the basis of pollen results from Lake Bølling Sø in Denmark. Because there were no radiocarbon dates from the sequence the Bølling Chronozone (12 000–13 000 14C yr BP) was later established on the basis of dates from other sites. A new project is reinvestigating the sediments from the Bølling Sø sequence with AMS radiocarbon dating and multiproxy analyses. Here we present results of AMS radiocarbon dating, macrofossil analyses, cladoceran analyses (Cladocera concentrations and chydorid ephippia) and Pediastrum analyses (concentrations). The AMS dates on land plant remains show that the lower part of the sequence is around 12 500 14C yr BP, and thus clearly pre‐dates the Allerød chronozone. However, construction of a chronology for the sequence was problematic, partly because of reworking of macroscopic plant remains. The climate ameliorated after glacial conditions to such an extent that growth of plants could begin at ca. 12 500 14C yr BP, but the results of multiproxy analyses show little evidence for a further warming period during the pre‐Allerød part of the sequence. Lake productivity was low, and tree birch rare or maybe absent. This may reflect widespread occurrence of dead ice, unstable soils, heavy in‐wash of minerogenic matter to the lake, resulting in turbid water and rapid sedimentation. The early pioneer vegetation was characterised by Salix polaris and Dryas octopetala, and by herbs. The Allerød Chronozone, and especially its initial part, appears to have been relatively warm but reduced cladoceran concentrations and increased proportion of chydorid ephippia suggest that climate cooled in the middle Allerød and that the late Allerød was colder than the early part. The early Younger Dryas was probably colder than the late Younger Dryas. Clear warming is apparent at the beginning of the Holocene, where the first macrofossil evidence of trees (Betula pubescens, Populus tremula) is found. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Few well‐dated records of the deglacial dynamics of the large palaeo‐ice streams of the major Northern Hemisphere ice sheets are presently available, a prerequisite for an improved understanding of the ice‐sheet response to the climate warming of this period. Here we present a transect of gravity‐core samples through Trænadjupet and Vestfjorden, northern Norway, the location of the Trænadjupet – Vestfjorden palaeo‐ice stream of the NW sector of the Fennoscandian Ice Sheet. Initial ice recession from the shelf break to the coastal area (~400 km) occurred at an average rate of about 195 m a−1, followed by two ice re‐advances, at 16.6–16.4 ka BP (the Røst re‐advance) and at 15.8–15.6 ka BP (the Værøy re‐advance), the former at an estimated ice‐advance rate of 216 m a−1. The Røst re‐advance has been interpreted to be part of a climatically induced regional cold spell while the Værøy re‐advance was restricted to the Vestfjorden area and possibly formed as a consequence of internal ice‐sheet dynamics. Younger increases in IRD content have been correlated to the Skarpnes (Bølling – Older Dryas) and Tromsø – Lyngen (Younger Dryas) Events. Overall, the decaying Vestfjorden palaeo‐ice stream responded to the climatic fluctuations of this period but ice response due to internal reorganization is also suggested. Separating the two is important when evaluating the climatic response of the ice stream. As demonstrated here, the latter may be identified using a regional approach involving the study of several palaeo‐ice streams. The retreat rates reported here are of the same order of magnitude as rates reported for ice streams of the southern part of the Fennoscandian Ice Sheet, implying no latitudinal differences in ice response and retreat rate for this ~1000 km2 sector of the Fennoscandian Ice Sheet (~60–68°N) during the climate warming of this period.  相似文献   

7.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Palynological and sedimentological analyses of a sedimentary sequence sampled at Hauterive/Rouges‐Terres, Lake Neuchâtel (Switzerland) provide documentation of changes in vegetation and lake‐level during the Bølling, Younger Dryas and Preboreal pollen zones, and have allowed a comparison with sequences covering the same period from other sites located in the western part of the Swiss Plateau. The Juniperus–Hippophaë zone (regional pollen assemblage zone (RPAZ) CHb‐2, first part of the Bølling, ca. 14 650–14 450 cal. yr BP) was characterised by a generally low lake‐level. A weak rise occurred during this zone. The Juniperus–Hippophaë to Betula zone transition coincided with a lake‐level lowering, interrupted by a short‐lived but marked phase of higher lake‐level recorded at the neighbouring site of Hauterive‐Champréveyres, but not present at Hauterive/Rouges‐Terres owing to an erosion surface. Shortly after the beginning of the Betula zone (RPAZ CHb‐3, second part of the Bølling, ca 14 450–14 000 cal. yr BP), a marked rise in lake‐level occurred. It was composed of two successive periods of higher level, coinciding with high values of Betula, separated by a short episode of relatively lower lake‐level associated with raised values in Artemisia and other non‐arboreal pollen. The last part of RPAZ CHb‐3 saw a fall in lake‐level. The lower lake‐levels during RPAZ CHb‐2 to early RPAZ CHb‐3 can be correlated with the abrupt warming at the beginning of the Greenland Interstadial (GI) 1e thermal maximum. The successive episodes of higher lake‐level punctuating the GI 1e might be linked to the so‐called Intra‐Bølling Cold Oscillations identified from several palaeoclimatic records in the North Atlantic area, and also documented in oxygen‐isotope data sets from Swiss Plateau lakes. The Hauterive/Rouges‐Terres lake‐level record provides evidence for marked climatic drying through the second part of the Younger Dryas event (GS1), during the GS1–Preboreal (RPAZ CHb‐4b–4c) transition (except for a rise at ca. 11 450–11 400 cal. yr BP), and at the RPAZ CHb‐4c–5 (Preboreal–Boreal) transition, following the Preboreal Oscillation (after 11 150 cal. yr BP). The Preboreal Oscillation coincided with higher lake‐levels, its end being followed by a rapid expansion of Corylus, Quercus, Ulmus and Tilia. The Hauterive/Rouges‐Terres lake‐level record suggests that radiocarbon plateau at 12 600, 10 000 and 9500 14C yr BP corresponded to periods of generally lower lake‐level. This suggests that an increase in solar activity may have contributed to both climatic dryness and a decrease in atmospheric radiocarbon content. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Blomvåg, on the western coast of Norway north of Bergen, is a classical site in Norwegian Quaternary science. Foreshore marine sediments, named the Blomvåg Beds and now dated to the Bølling‐Allerød from 14.8 to 13.3 cal. ka BP, contain the richest Lateglacial bone fauna in Norway, numerous mollusc shells, driftwood, and flint that some archaeologists consider as the oldest traces of humans in Norway. The main theme of this paper is that the Blomvåg Beds are overlain by a compact diamicton, named the Ulvøy Diamicton, which was interpreted previously as a basal till deposited during a glacial re‐advance into the ocean during the Older Dryas (c. 14 cal. ka BP). Sediment sections of the Blomvåg Beds and the Ulvøy Diamicton were exposed in ditches in a cemetery that was constructed in 1941–42 and have subsequently not been accessible. A number of radiocarbon and cosmogenic 10Be exposure ages demonstrate that the diamicton is not likely to be a till because minimum deglaciation ages (14.8–14.5 cal. ka BP) from the vicinity pre‐date the Ulvøy Diamicton. We now consider that sea ice and icebergs formed the Ulvøy Diamicton during the Younger Dryas. The Scandinavian Ice Sheet margin was located on the outermost coastal islands between at least c. 18.5 and 14.8 cal. ka BP; however, no ice‐marginal deposits have been found offshore from this long period. The Older Dryas ice margin in this area was located slightly inside the Younger Dryas margin, whereas farther south it was located slightly beyond the Younger Dryas margin.  相似文献   

10.
Detailed fieldwork and new extensive 14C dating of residual channel infillings provide data for the reconstruction of the Late‐glacial channel downcutting and incision history of the Venlo–Boxmeer lower reach of the River Meuse (= Maas) in the southern Netherlands. Within a period of 500–1300 yr after Late‐glacial climatic amelioration, the Meuse responded to increased discharges and decreased sediment supply by adjusting the width/depth ratio of its channels. Two main phases of channel downcutting are followed by two main phases of floodplain lowering and narrowing, indicating net floodplain degradation by the fluvial system as a non‐linear response to Late‐glacial and Early Holocene climate change. Some 1300 yr after initial late‐glacial warming, channels downcut rapidly during the Early Bølling (13.3–12.5 kyr BP) and adopted a high‐sinuosity meandering style. Channel downcutting paused around 11.9 kyr BP, possibly in response to rising groundwater levels and/or the Older Dryas cooling event. Between 11.9 and 11.3 kyr BP a new floodplain was formed. Then, lateral erosion took place and initiated a first phase of 2.6 m floodplain lowering during the Late Allerød. Gradual climate deterioration during the Allerød progressively broke up soils and vegetation cover, from 11.3 to 10.9 kyr BP. The Meuse gradually adjusted to an increased ratio of sediment supply over transport capacity through higher width/depth ratios. Main channels became shallower and adopted a low‐sinuosity pattern, finally culminating in a braided river system during the Younger Dryas. The final Holocene warming resulted, within 500 yr, in renewed rapid channel downcutting by a single low‐sinuosity channel during the Early Preboreal, followed by a second phase of 1.8–2.8 m floodplain lowering. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The Upper Garonne Basin included the largest glacial system in the Pyrenees during the last glacial cycle. Within the long-term glacial retreat during Termination-1 (T-1), glacier fluctuations left geomorphic evidence in the area. However, the chronology of T-1 glacial oscillations on the northern slopes of the Central Pyrenees is still poorly constrained. Here, we introduce new geomorphological observations and a 12-sample dataset of 10Be cosmic-ray exposure ages from the Ruda Valley. This U-shaped valley, surrounded by peaks exceeding 2800 m a.s.l., includes a sequence of moraines and polished surfaces that enabled a reconstruction of the chronology of the last deglaciation. Following the maximum ice extent, warmer conditions prevailing at ~15–14 ka, during the Bølling–Allerød (B–A) Interstadial, favoured glacial retreat in the Ruda Valley. Within the B–A, glaciers experienced two phases of advance/stillstand with moraine formation at 13.5 and 13.0 ka. During the early Younger Dryas (YD), glacial retreat exposed the highest surfaces of the Saboredo Cirque (~2300–2350 m) at 12.7 ka. Small glaciers persisted only inside the highest cirques (~2470 m), such as in Sendrosa Cirque, with moraines stabilising at 12.6 ka. The results of this work present the most complete chronology for Pyrenean glacial oscillations from the B–A to the YD.  相似文献   

12.
The deglaciation history of the Malangen‐Målselv fjord and valley area proximally to the Tromsø‐Lyngen (Younger Dryas) moraine at Bakkejord, Malangen, northern Norway, is reconstructed based on morphostratigraphic, lithostratigraphic and geophysical evidence, and 25 radiocarbon dates from marine shells and foraminifera. The results show that following the Skarpnes event c. 12 200 14Cyr BP, and prior to the Younger Dryas readvance, the area was deglaciated at least as far as Sandmo situated 22 km proximally to the Tromsø‐Lyngen moraine. Two moraine ridges crossing the fjord at Sandmo and buried beneath thick glaciomarine sediments are correlated with this period. The area was subsequently deglaciated between 10 300 and 9200 14Cyr BP, following the Tromsø‐Lyngen (Younger Dryas) readvance. Five ice‐front accumulations post‐dating the Tromsø‐Lyngen moraine and situated 19, 27, 42, 55 and 77 km behind it are identified and dated based on radiocarbon dates and correlation of marine limits: Målsnes (c. 10 050 14Cyr BP), Kjerresnes (c. 10 000 14Cyr BP), Solli (c. 9750 14Cyr BP), Bardufoss‐Brentmoen‐Storskogmoen (c. 9600–9700 14Cyr BP) and Alapmoen (c. 9200 Cyr BP). The largest of these, at Bardufoss‐Storskogmoen, possibly accumulated as a response to an ice advance. Fourteen dates of apparent late Allerød/Younger Dryas age (11 100–10 000 14Cyr BP), obtained from fossils in glaciomarine sediments in the Målselv valley up to 77 km proximally to the Tromsø‐Lyngen moraine, are interpreted as postdating rather than predating this moraine. Several of these are considered to be too old because of uncertain reservoir age, carbon‐dating plateaus and/or contamination. This highlights uncertainties associated with radiocarbon‐dating and the profound effect such uncertainties may have on interpreting geological events.  相似文献   

13.
A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea‐level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea‐level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time‐scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post‐glacial rise in Betula (birch) pollen). The sea‐level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary. The sea level remained at the high stand for about 300 yr and 100 yr into Holocene it started to fall rapidly. The peak of the Younger Dryas transgression occurred simultaneously with the maximum extent of the ice‐sheet readvance in the area. Our results support earlier geophysical modelling concluding a causal relationship between the Younger Dryas glacier advance and Younger Dryas transgression in western Norway. We argue that the sea‐level curve indicates that the Younger Dryas glacial advance started in the late Allerød or close to the Allerød–Younger Dryas transition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The upwelling region off northwest Africa is one of the most productive regions in the world ocean. This study details the response of surface‐ and deep‐water environments off Mauritania, northwest Africa, to the rapid climate events of the last deglaciation, especially the Bølling–Allerød (15.5–13.5 ka BP) and Younger Dryas (13.5–11.5 ka BP). A high accumulation rate gravity core GeoB7926‐2, recovered at ~20° N, 18° W, was analysed for the grain size distribution of the terrigenous sediment fraction, the organic carbon content, diatom and benthic foraminifera communities. Humid conditions were observed during the Bølling–Allerød with a high contribution of fluvial sediment input. During the Younger Dryas intensified trade winds caused a larger sediment input of aeolian dust from the Sahara and more intense upwelling with higher primary productivity, as indicated by high diatom concentrations. The abrupt and large increase of organic matter caused low oxygen conditions at the sea floor, reflected by the poor benthic foraminiferal fauna and the dominance of the low‐oxygen‐tolerant foraminiferal species Bulimina exilis. This is surprising since low‐oxygen conditions have not been recorded during modern times at the sea floor in this region, despite present‐day intensive upwelling and high primary productivity. After the Younger Dryas, more humid conditions returned, diatom abundance decreased and B. exilis was replaced by typical deep‐sea species as found in the region today, indicating the return of more oxygenated conditions at the sea floor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Articulated molluscs, sea urchins and barnacle fragments close to the Vedde Ash Bed in a shallow marine deposit on the west coast of Norway have been 14C dated. The weighted mean of four dates from a sediment slice 8 cm thick centred on the Vedde Ash Bed is 10920 ± 24 14C yr BP. The most accurate 14C age of the Vedde Ash from terrestrial plant macrofossils is 10310 ± 50 yr BP. The difference is the 14C reservoir age for coastal water at the west coast of Norway during the mid‐Younger Dryas and equals 610 ± 55 yr. This is 230 yr older than the reservoir age for the Bølling/Allerød and for the present day in this area. The result supports earlier conclusions of a higher reservoir age for the Younger Dryas in the North Atlantic and Nordic Seas, although our reservoir age of 610 ± 55 yr is a few hundred years younger. This suggests that the 14C reservoir age at Vedde Ash time may increase from coastal water towards the open North Atlantic and Nordic Seas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial–Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high‐resolution multi‐proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25 µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm?2 a?1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling–Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short‐lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high‐resolution studies based on multi‐proxy approaches and the development of appropriate modern analogues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
We constrain, in detail, fluctuations of two former ice caps in NW Scotland with multibeam seabed surveys, geomorphological mapping and cosmogenic 10Be isotope analyses. We map a continuous sequence of 40 recessional moraines stretching from ~10 km offshore to the Wester Ross mountains. Surface‐exposure ages from boulders on moraine ridges in Assynt and the Summer Isles region show that substantial, dynamic, ice caps existed in NW Scotland between 13 and 14 ka BP. We interpret this as strong evidence that large active glaciers probably survived throughout the Lateglacial Interstadial, and that during the Older Dryas period (ca. 14 ka BP) ice caps in NW Scotland were thicker and considerably more extensive than in the subsequent Younger Dryas Stadial. By inference, we suggest that Lateglacial ice‐cap oscillations in Scotland reflect the complex interplay between changing temperature and precipitation regimes during this climatically unstable period (ca. 15–11 ka BP). © Natural Environment Research Council (NERC) copyright 2008. Reproduced with the permission of NERC. Published by John Wiley & Sons, Ltd.  相似文献   

18.
Houmark‐Nielsen, M. 2010: Extent, age and dynamics of Marine Isotope Stage 3 glaciations in the southwestern Baltic Basin. Boreas, 10.1111/j.1502‐3885.2009.00136.x. ISSN 0300‐9483 The southwestern Baltic region is known as a major crossroad for the expansion of Pleistocene glaciers from the Scandinavian Ice Sheet (SIS). At the peak of the Last Glacial Maximum (LGM, 25–20 kyr BP), steady‐flowing inter‐stream glaciers expanded radially from the major ice divide over central Scandinavia. During the subsequent deglaciation phase (20–15 kyr BP), streaming ice was flowing through the Baltic gateway onto the North European lowland. The lithology and directional ice‐flow properties of pre‐LGM till formations of Baltic provenance in Denmark (the Ristinge till and Klintholm till) suggest that the ice‐sheet dynamics during the Marine Isotope Stage (MIS) 3 glacier expansion were similar to those for the post‐LGM advances. Increasing geological evidence indicates that glaciers extended onto the Circum‐Baltic lowlands during MIS 3. Reconstructions of flow paths and estimates of the basal ice‐sheet coupling in Denmark suggest that southward flow of the SIS through the Baltic was probably the result of ice streaming. Despite methodological uncertainties, available OSL and 14C dates indicate that glaciers advanced at least twice during the mild second half of the Middle Weichselian (c. 75–25 kyr BP), most probably in connection with Dansgaard‐Oeschger (D‐O) events 14–13 (54–46 kyr BP) and 8–5 (35–30 kyr BP). The chronology and dynamics of glacier expansion in the southwestern Baltic in response to long‐term cooling trends, the contemporary presence of a low Arctic biota in large parts of Scandinavia and of possible leads or lags in relation to North Atlantic climate changes during MIS 3 are discussed.  相似文献   

19.
In the north Irish Sea basin (ISB), sedimentary successions constrained by AMS 14C dates obtained from marine microfaunas record three major palaeoenvironmental shifts during the last deglacial cycle. (i) Marine muds (Cooley Point Interstadial) dated to between 16.7 and 14.7 14C kyr BP record a major deglaciation of the ISB following the Late Glacial Maximum (LGM). (ii) Terminal outwash and ice-contact landforms (Killard Point Stadial) were deposited during an extensive ice readvance, which occurred after 14.7 14C kyr BP and reached a maximum extent at ca.14 14C kyr BP. At this time the lowlands surrounding the north ISB were drumlinised. Coeval flowlines reconstructed from these bedforms end at prominent moraines (Killard Point, Bride, St Bees) and indicate contemporaneity of drumlinisation from separate ice dispersal centres, substrate erosion by fast ice flow, and subglacial sediment transfer to ice-sheet margins. In north central Ireland bed reorganisation associated with this fast ice-flow phase involved overprinting and drumlinisation of earlier transverse ridges (Rogen-type moraines) by headward erosion along ice streams that exited through tidewater ice margins. This is the first direct terrestrial evidence that the British Ice Sheet (BIS) participated in Heinrich event 1 (H1). (iii) Regional mud drapes, directly overlying drumlins, record high relative sea-level (RSL) with stagnation zone retreat after 13.7 14C kyr BP (Rough Island Interstadial). Elsewhere in lowland areas of northern Britain ice-marginal sediments and morainic belts record millennial-scale oscillations of the BIS, which post-date the LGM advance on to the continental shelf, and pre-date the Loch Lomond Stadial (Younger Dryas) advance in the highlands of western Scotland (ca. 11–10 14C kyr BP). In western, northwestern and northern Ireland, Killard Point Stadial (H1) ice limits are reconstructed from ice-flow lines that are coeval with those in the north ISB and end at prominent moraines. On the Scottish continental shelf possible H1-age ice limits are reconstructed from dated marine muds and associated ice marginal moraines. It is argued that the last major offshore ice expansion from the Scottish mountains post-dated ca. 15 14C kyr BP and is therefore part of the H1 event. In eastern England the stratigraphic significance of the Dimlington silts is re-evaluated because evidence shows that there was only one major ice oscillation post-dating ca.18 14C kyr BP in these lowlands. In a wider context the sequence of deglacial events in the ISB (widespread deglaciation of southern part of the BIS → major readvance during H1 → ice sheet collapse) is similar to records of ice sheet variability from the southern margins of the Laurentide Ice Sheet (LIS). Well-dated ice-marginal records, however, show that during the Killard Point readvance the BIS was at its maximum position when retreat of the LIS was well underway. This phasing relationship supports the idea that the BIS readvance was a response to North Atlantic cooling induced by collapse of the LIS. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号