首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

2.
Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu‐Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh‐pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark‐luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white‐luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542–693 °C and 1.8–2.1 GPa. In contrast, the UHP metamorphic domains are grey‐luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739–866 °C and >5.5 GPa. The outermost retrograde rims have dark‐luminescent CL images, and contain low‐P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP‐MS trace‐element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U‐Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823–503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254–239 Ma, the UHP growth domains occurred at 238–230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218–206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55–60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165–175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid‐crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P–T conditions are 9–10 km Myr?1 and 6.4 km Myr?1, respectively, and these rapid subduction–exhumation rates may explain the obtained P–T–t path. Such a fast exhumation suggests that Sulu‐Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth.  相似文献   

3.
Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃and P = 1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite edogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃and P > 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600-710℃and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245±4 Ma for domain 1, 235±3 Ma for domain 2 and 215±6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244±4 Ma, 233±4 Ma and 214±5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from~55 km to > 160 km deep mantle depth took place at rates of approximately 9.5-10.5 km/Ma and exhumation from depths >160 km to the base of the crust at~30 km occurred at approximately 6.5 km/Ma. We propose a model for these rocks involving deep subduction of continental margin lithosphere followed by ultrafast exhumation driven by buoyancy forces after break-off of the UHP slab deep within the mantle.  相似文献   

4.
Garnet‐bearing ultramafic rocks including clinopyroxenite, wehrlite and websterite locally crop out in the Higashi‐akaishi peridotite of the Besshi region in the Cretaceous Sanbagawa metamorphic belt. These rock types occur within dunite as lenses, boudins or layers with a thickness ranging from a few centimetres to 1 metre. The wide and systematic variation of bulk‐rock composition and the overall layered structure imply that the ultramafic complex originated as a cumulate sequence. Garnet and other major silicates contain rare inclusions of edenitic amphibole, chlorite and magnetite, implying equilibrium at relatively low P–T conditions during prograde metamorphism. Orthopyroxene coexisting with garnet shows bell‐shaped Al zoning with a continuous decrease of Al from the core towards the rim, consistent with rims recording peak metamorphic conditions. Estimated P–T conditions using core and rim compositions of orthopyroxene are 1.5–2.4 GPa/700–800 °C and 2.9–3.8 GPa/700–810 °C, respectively, implying a high P/T gradient (> 3.1 GPa/100 °C) during prograde metamorphism. The presence of relatively low P–T conditions at an early stage of metamorphism and the steep P/T gradient together trace a concave upwards P–T path that shows increasing P/T with higher T, similar to P–T paths reported from other UHP metamorphic terranes. These results suggest either (1) down dragging of hydrated mantle cumulate parallel to the slab–wedge interface in the subduction zone by mechanical coupling with the subducting slab or (2) ocean floor metamorphism and/or serpentinization at early stage of subduction of oceanic lithosphere and ensuing HP–UHP prograde metamorphism.  相似文献   

5.
The metamorphic rocks of the Ivrea Zone in NW Italy preserve a deep crustal metamorphic field gradient. Application of quantitative phase equilibria methods to metapelitic rocks provides new constraints on the P–T conditions recorded in Val Strona di Omegna, Val Sesia and Val Strona di Postua. In Val Strona di Omegna, the metapelitic rocks show a structural and mineralogical change from mica‐schists with the common assemblage bi–mu–sill–pl–q–ilm ± liq at the lowest grades, through metatexitic migmatites (g–sill–bi–ksp–pl–q–ilm–liq) at intermediate grades, to complex diatexitic migmatites (g–sill–ru–bi–ksp–pl–q–ilm–liq) at the highest grades. Partial melting in the metapelitic rocks is consistent with melting via the breakdown of first muscovite then biotite. The metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of ~3.5–6.5 kbar at ≈650 °C to ~10–12 kbar at >900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher than those of most earlier studies. In Val Sesia and Val Strona di Postua, cordierite‐bearing rocks record the effects of contact metamorphism associated with the intrusion of a large mafic body (the Mafic Complex). The contact metamorphism occurred at lower pressures than the regional metamorphic peak and overprints the regional metamorphic assemblages. These relationships are consistent with the intrusion of the Mafic Complex having post dated the regional metamorphism and are inconsistent with a model of magmatic underplating as the cause of granulite facies metamorphism in the region.  相似文献   

6.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

7.
This virtual special issue represents a collection of papers concerning Crustal Melting selected by the Editor from those published on various aspects of this theme in the JMG since 1982. The papers are grouped into sequences that address topics that have been prominent in the JMG during the last 30 years concerning the origin, evolution and tectonic role of migmatites and migmatitic granulites in crustal evolution. These topics are: Open‐ and closed‐system processes in the formation of migmatites and migmatitic granulites; thermobarometry, P–T paths, phase equilibria modelling and retrograde processes in formerly melt‐bearing rocks; geochronology in partially melted rocks; and, microstructures, deformation and tectonics of melt bearing rocks. About one‐third of the papers published in the JMG since its inception concern the origin, evolution and tectonic significance of migmatites and migmatitic granulites in crustal evolution, including the first special issue published by the JMG concerning ‘Studies in the genesis and deformation of migmatites’ edited by Tracy & Day ( 1988; Volume 6, Issue 4, Pages 385‐543 ). Three subsequent Special Issues of the JMG include papers relevant to the theme of this virtual special issue; they are ‘Metamorphic processes: a celebration of the career contribution of Ron Vernon’, ‘Processes in granulite metamorphism’ and ‘Granulites, partial melting and the rheology of the lower crust’, edited by Brown & Clarke ( 2002; Volume 20, Issue 1, Pages 1‐213 ), Brown & White ( 2008; Volume 26, Issue 2, Pages 121‐299 ) and Brown et al. ( 2011; Volume 29, Issue 1, Pages 1‐166 ), respectively. The selection of papers in this virtual special issue is by no means comprehensive, but it is intended as a representative selection of what has been published in the JMG over 30 years to give the reader a broad overview of crustal melting. Furthermore, although many papers address more than one topic, each is included only once and has been placed within the most appropriate section.  相似文献   

8.
Laser ablation inductively coupled plasma mass spectrometry analyses of U–Pb isotopes and trace elements in zircon and titanite were carried out on epoxy mounts and thin sections for ultrahigh‐pressure (UHP) eclogite in association with paragneiss in the Dabie orogen. The results provide a direct link between metamorphic ages and temperatures during continental subduction‐zone metamorphism. Zircon U–Pb dating gives two groups of concordant ages at 242 ± 2 to 239 ± 5 Ma and 226 ± 2 to 224 ± 6 Ma, respectively. The Triassic zircon U–Pb ages are characterized by flat heavy rare earth element (HREE) patterns typical of metamorphic growth. Ti‐in‐zircon thermometry for the two generations of metamorphic zircon yields temperatures of 697 ± 27 to 721 ± 8 °C and 742 ± 19 to 778 ± 34 °C, respectively. We interpret that the first episode of zircon growth took place during subduction prior to the onset of UHP metamorphism, whereas the second episode in the stage of exhumation from UHP to HP eclogite facies regime. Thus, the continental subduction‐zone metamorphism of sedimentary protolith is temporally associated with two episodes of fluid activity, respectively, predating and postdating the UHP metamorphic phase. The significantly high Ti‐in‐zircon temperatures for the younger zircon at lower pressures indicate the initial ‘hot’ exhumation after the peak UHP metamorphism. There are two types of titanite. One exhibits light rare earth element (LREE) enrichment, steep MREE–HREE patterns and no Eu anomalies, and yields Zr‐in‐titanite temperatures of 551 to 605 °C at 0.5 GPa, and the other shows LREE depletion and flat MREE–HREE patterns, and gives Zr‐in‐titanite temperatures of 782–788 °C at 2.0 GPa. The former is amenable for U–Pb dating, yielding a discordia lower intercept age of 252 ± 3 Ma. Thus, the first type of titanite is interpreted to have grown in the absence of garnet and plagioclase and thus in the early stage of subduction. In contrast, the second one occurs as rims surrounding rutile cores and thus grew in the presence of garnet during the ‘hot’ exhumation. Therefore, there is multistage growth of zircon and titanite during the continental subduction‐zone metamorphism. The combined studies of chronometry and thermobarometry provide tight constraints on the P–T–t path of eclogites during the continental collision. It appears that the mid‐T/UHP eclogite facies zone would not only form by subduction of the continental crust in a P–T path slightly below the wet granite solidus, but also experience decompression heating during the initial exhumation.  相似文献   

9.
The Malpica–Tui Unit (Galicia, NW Spain) records eclogite‐ and blueschist‐facies metamorphism during the onset of the Variscan orogeny in Europe. Petrological analysis involving pseudosections calculated using thermocalc shows that the Upper Sheet of this unit, the Ceán Schists, recorded a three‐stage metamorphic evolution involving (i) Early subduction‐related medium‐pressure/low‐temperature metamorphism (M1) constrained at ~350–380 °C, 12–14 kbar, which is only recorded in the basal part (lower metapelites, LM) of the Ceán Schists. (ii) Subduction‐related blueschist facies prograde metamorphism (M2) going from ~19 kbar, 420 °C to 21 kbar, 460 °C in the LM, and from 16 kbar 430 °C to 21–22 kbar, 520 °C in the structurally upper metapelites (UM). (iii) Exhumation‐related metamorphism (M3) is characterized by a decompression to 8–10 kbar, 470–490 °C in the LM. This decompression is also recorded in the UM, but it was not possible to estimate precise P–T conditions. The calculations indicate that (i) the prograde evolution in subduction zones may occur in fluid‐undersaturated conditions due to the crystallization of lawsonite, even in metapelitic rocks. This significantly influences phase equilibria and hence the P–T estimates. (ii) The proportion of ferric iron also has a strong influence on phase equilibria, even in metapelites. However, the analysed values of Fe2O3 may not reflect the oxidation state during the main metamorphic evolution and are probably easily modified by superficial alteration even in apparently fresh samples. The use of PTX(Fe2O3) pseudosections together with petrographic observations is then necessary to estimate the real oxidation state of the rocks and correctly evaluate the P–T conditions.  相似文献   

10.
The early Palaeozoic South Qilian–North Qaidam orogenic belt in northwestern China records a nearly complete history of early‐stage long‐lived oceanic subduction–accretion followed by late‐stage continental collision. Most previous studies have focused on low dT/dP metamorphism (HP–UHP) in this belt whereas the paired high dT/dP belt in the hinterland has received little attention. In this contribution, phase equilibrium modelling is combined with zircon petrochronology to determine the P–T–t evolution of granulites in the North Wulan gneiss complex in the high dT/dP hinterland of the South Qilian–North Qaidam orogen. Granulites record a clockwise P–T path with near‐peak temperatures of ~800–900°C at 5.5–7 kbar. Peak metamorphism was followed by high‐T decompression. Zircon petrochronology reveals protracted zircon growth from c. 474 to 446 Ma during the high‐T portion of the P–T path. High dT/dP metamorphism in the North Wulan gneiss complex was likely the result of heat transfer from the underlying hot asthenosphere and minor coeval magmatism in an arc–back‐arc system during slab retreat and roll‐back of the South Qilian oceanic plate. Broadly contemporaneous but slightly younger HP–UHP metamorphism in the foreland of the South Qilian–North Qaidam orogenic belt indicates that the region records an early Palaeozoic paired metamorphic belt. This early Palaeozoic paired metamorphic belt provides a detailed example of dual thermal regimes in a modern‐style orogenic system that can be applied to understanding the time‐scales and P–T conditions of high dT/dP metamorphism that accompany subduction in Phanerozoic and Precambrian orogenic belts.  相似文献   

11.
The Windmill Islands region in Wilkes Land, east Antarctica, preserves granulite facies metamorphic mineral assemblages that yield seemingly comparable P–T estimates from conventional thermobarometry and mineral equilibria modelling. This is uncommon in granulite facies terranes, where conventional thermobarometry and phase equilibria modelling generally produce conflicting P–T estimates because peak mineral compositions tend to be modified by retrograde diffusion processes. In situ U–Pb monazite geochronology and calculated metamorphic phase diagrams show that the Windmill Islands experienced two phases of high thermal gradient metamorphism during the Mesoproterozoic. The first phase of metamorphism is recorded by monazite ages in two widely separated samples and occurred at c. 1,305 Ma. This event was regional in extent, involved crustally derived magmatism and reached conditions of ~3.2–5 kbar and 690–770°C corresponding to very high thermal gradients of >150°C/kbar. The elevated thermal regime is interpreted to reflect a period of extension or increased extension in a back‐arc setting that existed prior to c. 1,330 Ma. The first metamorphic event was overprinted by granulite facies metamorphism at c. 1,180 Ma that was coeval with the intrusion of charnockite. This event involved peak temperatures of ~840–850°C and pressures of ~4–5 kbar. A phase of granitic magmatism at c. 1,250–1,210 Ma, prior to the intrusion of the charnockite, is interpreted to reflect a phase of compression within an overall back‐arc setting. Existing conventional thermobarometry suggests conditions of ~4 kbar and 750°C for M1 and 4–7 kbar and 750–900°C for M2. The apparent similarities between the phase equilibria modelling and existing conventional thermobarometry may suggest either that the terrane cooled relatively quickly, or that the P–T ranges obtained from conventional thermobarometry are sufficiently imprecise that they cover the range of P–T conditions obtained in this study. However, without phase equilibria modelling, the veracity of existing conventional P–T estimates cannot be evaluated. The calculated phase diagrams from this study allow the direct comparison of P–T conditions in the Windmill Islands with phase equilibria models from other regions in the Musgrave–Albany–Fraser–Wilkes Orogen. This shows that the metamorphic evolution of the Wilkes Land region is very similar to that of the eastern Albany–Fraser Orogen and Musgrave Province in Australia, and further demonstrates the remarkable consistency in the timing of metamorphism and the thermal gradients along the ~5,000 km strike length of this system.  相似文献   

12.
The recent identification of multiple strike‐parallel discontinuities within the exhumed Himalayan metamorphic core has helped revise the understanding of convergence accommodation processes within the former mid‐crust exposed in the Himalaya. Whilst the significance of these discontinuities to the overall development of the mountain belt is still being investigated, their identification and characterization has become important for potential correlations across regions, and for constraining the kinematic framework of the mid‐crust. The result of new phase equilibria modelling, trace element analysis and high‐precision Lu–Hf garnet dating of the metapelites from the Likhu Khola region in east central Nepal, combined with the previously published monazite petrochronology data confirms the presence of one of such cryptic thrust‐sense tectonometamorphic discontinuities within the lower portion of the exhumed metamorphic core and provides new constraints on the P–T estimates for that region. The location of the discontinuity is marked by an abrupt change in the nature of P–T–t paths of the rocks across it. The rocks in the footwall are characterized by a prograde burial P–T path with peak metamorphic conditions of ~660°C and ~9.5 kbar likely in the mid‐to‐late Miocene, which are overlain by the hanging wall rocks, that preserve retrograde P–T paths with P–T conditions of >700°C and ~7 kbar in the early Miocene. The occurrence of this thrust‐sense structure that separates rock units with unique metamorphic histories is compatible with orogenic models that identify a spatial and temporal transition from early midcrustal deformation and metamorphism in the deeper hinterland to later deformation and metamorphism towards the shallower foreland of the orogen. Moreover, these observations are comparable with those made across other discontinuities at similar structural levels along the Himalaya, confirming their importance as important orogen‐scale structures.  相似文献   

13.
The tectono‐metamorphic evolution of the Hercynian intermediate–upper crust outcropping in eastern Sila (Calabria, Italy) has been reconstructed, integrating microstructural analysis, P–T pseudosections, mineral isopleths and geochronological data. The studied rocks belong to a nearly complete crustal section that comprises granulite facies metamorphic rocks at the base and granitoids in the intermediate levels. Clockwise P–T paths have been constrained for metapelites of the basal level of the intermediate–upper crust (Umbriatico area). These rocks show noticeable porphyroblastic textures documenting the progressive change from medium‐P metamorphic assemblages (garnet‐ and staurolite‐bearing assemblages) towards low‐P/high‐T metamorphic assemblages (fibrolite‐ and cordierite‐bearing assemblages). Peak‐metamorphic conditions of ~590 °C and 0.35 GPa are estimated by integrating microstructural observations with P–T pseudosections calculated for bulk‐rock and reaction‐domain compositions. The top level of the intermediate–upper crust (Campana area) recorded only the major heating phase at low‐P (~550 °C and 0.25 GPa), as documented by the static growth of biotite spots and of cordierite and andalusite porphyroblasts in metapelites. In situ U–Th–Pb dating of monazite from schists containing low‐P/high‐T metamorphic assemblages gave a weighted mean U–Pb concordia age of 299 ± 3 Ma, which has been interpreted as the timing of peak metamorphism. In the framework of the whole Hercynian crustal section the peak of low‐P/high‐T metamorphism in the intermediate‐to‐upper crust took place concurrently with granulite facies metamorphism in the lower crust and with emplacement of the granitoids in the intermediate levels. In addition, decompression is a distinctive trait of the P–T evolution both in the lower and upper crust. It is proposed that post–collisional extension, together with exhumation, is the most suitable tectonic setting in which magmatic and metamorphic processes can be active simultaneously in different levels of the continental crust.  相似文献   

14.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

15.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   

16.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

17.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

18.
Petrological investigations supported by multi‐scale structural analysis of eclogitized serpentinite in the Zermatt–Saas Zone of the Western Alps allows for the determination of mineral assemblages related to successive fabrics, upon which the P–T–d–t path of these hydrated mantle rocks can be inferred. Serpentinites of the upper Valtournanche, with lenses and dykes of metagabbro and meta‐rodingite, display an Alpine polyphase metamorphic evolution from eclogite to epidote‐amphibolite facies conditions associated with three successive foliations having different parageneses in these rocks. Serpentinite mainly consists of serpentine with minor magnetite; however, where S1 and S2 foliations are pervasive, metamorphic olivine, together with Ti‐clinohumite and clinopyroxene, are also found. The mineral assemblage associated with D1 includes serpentine1, clinopyroxene1, opaque minerals, titanite ± olivine1, Ti‐clinohumite1 and ilmenite; the D2 assemblage is the same (±chlorite) but minerals have different compositions. The assemblage associated with D3 comprises serpentine3, opaque minerals, ±chlorite3, ilmenite and amphibole3. Ti‐clinohumite is associated with veins that are older than D2 and pre‐date D3. Veins that post‐date D3 are characterized by amphibole + chlorite or by serpentine. PT conditions for S2 parageneses evaluated using two pseudosections for different bulk compositions suggest that these rocks experienced pressures >2.5 ± 0.3 GPa at temperatures slightly higher than 600 °C. The late epidote–amphibolite facies re‐equilibration associated with D3 and D4 developed during late syn‐exhumation deformation related to folding and testifies to a small temperature decrease. These results, which were integrated in the regional framework, suggest that different portions of the Zermatt–Saas Zone registered different PT peak conditions and underwent different exhumation paths. In addition, the inferred PTdt path suggests that the Valtournanche serpentinites re‐equilibrated close to the UHP conditions registered by the Cignana meta‐cherts. These results imply that tectonic slices exhumed after UHP metamorphism might be wider than previously reported or that small‐size UHP units, tectonically sampled during the Alpine convergence, are more abundant than those that have been detected to date.  相似文献   

19.
Metasedimentary rocks, a major component of the continental crust, are abundant within ultra‐high pressure (UHP) metamorphic terranes related to continental collisions. The presence of diamond, coesite, and relics of decompressed minerals in these rocks suggests that they were subducted to a depth of more than 150–250 km. Reconnaissance experiments at 9–12 GPa and 1000–1300 °C on compositions corresponding to felsic rocks from diamond‐bearing UHP terranes of Germany and Kazakhstan show that at higher pressures they consist of majoritic garnet, Al‐Na‐rich clinopyroxene, stishovite, solid solution of KAlSi3O8‐NaAlSi3O8 hollandite, topaz‐OH, and TiO2 with α‐PbO2 structure. Comparison of our data with experiments conducted by others at similar P–T conditions shows differences, which are due to variations in bulk chemistry and the type of starting material (gel, oxides, minerals). These differences may affect correct establishment of the ‘point of no return’ of subducted continental lithologies. This paper discusses the implication of the experimental data with regard to naturally existing UHP metamorphic rocks and their significance for our understanding of the deep subduction of continental material.  相似文献   

20.
In the (ultra‐)high‐P–low‐T metamorphic terrane of the Chinese South Tianshan, discontinuous mafic blocks and boudins (former upper oceanic crust) are now embedded in voluminous (mainly metasedimentary) host rocks. Two different models were proposed and relate the occurrence of both high‐P and ultra‐high‐P mafic and metasedimentary rocks to either (i) a tectonic mélange style exhumation, with no exhumation of coherent units, but different lithologies derived from different depths juxtaposed and intermingled during exhumation in the subduction channel, or (ii) the evolution of two coherent metamorphic belts: one with high‐P and the other with ultra‐high‐P conditions. In contrast to most previous studies in the Chinese South Tianshan which focused either on single eclogites or metasedimentary rocks (assumed as representative), this study concentrates on the systematic investigation of both mafic boudins and their immediate sedimentary host rocks, because the investigation of both lithologies and the comparison of their metamorphic evolution is crucial to reconstruct the geodynamical context of the whole (ultra‐)high‐P–low‐T metamorphic complex. Several sample pairs consisting of both lithologies were geochemically investigated and their respective metamorphic evolution was reconstructed using geothermobarometry and thermodynamic modelling. The latter approach considers changes in the mineral assemblage during the metamorphic evolution, as well as changes in mineral composition, which may help to determine the metamorphic history of a rock despite the preservation of critical mineral assemblages. All samples experienced a clockwise P–T path with overall maximum P–T conditions of 540–550 °C and 1.9–2.25 GPa for the host rocks, and 555–575 °C and 2.2–2.5 GPa for the eclogites. Peak‐metamorphic temperatures of ~525–540 °C of the metasedimentary host rocks were also confirmed by Raman spectroscopy of carbonaceous material. Results from thermobarometry and thermodynamic modelling are consistent with the observation that none of the samples contains mineral relicts indicating UHP conditions (like coesite in garnet) and neither conventional thermobarometry, nor thermodynamical modelling resulted in P–T conditions in the stability field of coesite. Thus, no evidence of ultra‐high‐P conditions was found. Given that the whole sampled river valley lies within the proposed ‘ultra‐high‐P sub‐belt’ and considering former studies, which showed that at other places within this ‘unit’ both ultra‐high‐P and high‐P rocks are now juxtaposed on a small scale, the formation of the whole (ultra‐)high‐P–low‐T metamorphic belt in the Chinese South Tianshan as a tectonic mélange style exhumation is more convincing than the formation and juxtaposition of two coherent metamorphic units with high‐P and ultra‐high‐P conditions respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号