首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

2.
The higher grade metamorphic zonation of the Sambagawa (= Sanbagawa) belt is established for the first time for the whole area of central Shikoku. As discontinuous reactions to define the isograd are absent, the metamorphic grade is primarily determined by the Mg-Fe partitioning between garnet and chlorite along representative traverses. However, for regional mapping, mineralogical features of the pelitic schists, such as using mineral assemblages of more than divariant equilibrium, the modal garnet to chlorite ratio, and the optical properties of chlorite, are employed as auxiliary criteria.
The presence of the highest grade mineral zone in the middle of the structural level is confirmed, but its spatial distribution is far more complex than hitherto accepted. Thermal axes are now confirmed at three different structural levels. A model is presented in which the stacking of thrust sheets of different grade took place while metamorphic reactions were in progress. Thermal readjustment brought a continuous metamorphic temperature gradient across and within the thrust sheets. Tectonic blocks of metagabbro and ultramafic rock were emplaced synchronously with thinning and subsequently also re-equilibrated. Local anomalies of metamorphic grade, represented by mixing of schists of different metamorphic grade, exist, but they are due to a later stage event.  相似文献   

3.
Regional variation in the P–T path of the Sambagawa metamorphic rocks, central Shikoku, Japan has been inferred from compositional zoning of metamorphic amphibole. Rocks constituting the northern part (Saruta River area) exhibit a hairpin type P–T path, where winchite/actinolite grew at the prograde stage, the peak metamorphism was recorded by the growth of barroisite to hornblende and sodic amphibole to winchite/actinolite grew at the retrograde stage. In the southern part (Asemi River area), rocks exhibit a clockwise type P–T path, where barroisite to hornblende core is rimmed by winchite to actinolite. The difference in P–T path could suggest a faster exhumation rate (i.e. more rapid decompression) in the southern than in the northern part. On the other hand, physical conditions of deformation during the exhumation stage have been independently inferred from microstructures in deformed quartz. Recrystallized quartz grains in rocks from the low‐grade (chlorite and garnet) zones are much more stretched in the southern part (aspect ratio ≥ 4.0) than in the northern part (aspect ratio< 4.0), indicating a higher strain rate in the former than in the latter. These facts may indicate that the exhumation and strain rates are correlated (i.e. the exhumation rate increases with increasing the strain rate). The difference in the exhumation rate inferred from amphibole zoning between the northern and southern parts could be explained by an extensional model involving normal faulting, where the lower plate can be exhumed faster than the upper plate due to the displacement along the fault. Furthermore, the model may explain the positive correlation between the exhumation and strain rates, because the lower plate tended to support more stress than the upper plate.  相似文献   

4.
The occurrence of lawsonite is described from pelitic schists of the lower-grade part of the pumpellyite-bearing subzone of the chlorite zone in the Asemi River area of central Shikoku. The lawsonite-bearing parageneses are consistent with the generally accepted view that the Sanbagawa facies series represents higher pressures than the lawsonite-bearing facies series in New Zealand.  相似文献   

5.
Prograde P–T paths recorded by the chemistry of minerals of subduction‐related metamorphic rocks allow inference of tectonic processes at convergent margins. This paper elucidates the changing P–T conditions during garnet growth in pelitic schists of the Sambagawa metamorphic belt, which is a subduction related metamorphic belt in the south‐western part of Japan. Three types of chemical zoning patterns were observed in garnet: Ca‐rich normal zoning, Ca‐poor normal zoning and intrasectoral zoning. Petrological studies indicate that normally‐zoned garnet grains grew keeping surface chemical equilibrium with the matrix, in the stable mineral assemblage of garnet + muscovite + chlorite + plagioclase + paragonite + epidote + quartz ± biotite. Pressure and temperature histories were inversely calculated from the normally‐zoned garnet in this assemblage, applying the differential thermodynamic method (Gibbs' method) with the latest available thermodynamic data set for minerals. The deduced P–T paths indicate slight increase of temperature with increasing pressure throughout garnet growth, having an average dP/dT of 0.4–0.5 GPa/100 °C. Garnet started growing at around 470 °C and 0.6 GPa to achieve the thermal and baric peak condition near the rim (520 °C, 0.9 GPa). The high‐temperature condition at relatively low pressure (for subduction related metamorphism) suggests that heating occurred before or simultaneously with subduction.  相似文献   

6.
Analysis of fault system in the high-P/T type Sambagawa metamorphic rocks of central Shikoku, southwest Japan, shows that conjugate normal faults pervasively developed in the highest-grade biotite zone (upper structural level) in three study areas (Asemi river, Oriu and Niihama areas). These conjugate normal faults consist of NE–SW to E–W striking and moderately north-dipping (set A), and NNW–SSE striking and moderately east dipping (set B) faults. The fault set A is dominant compared to the fault set B, and hence most of deformation is accommodated by the fault set A, leading to non-coaxial deformation. The sense of shear is inferred to be a top-to-the-WNW to NNW, based on the orientations of striation or quartz slickenfibre and dominant north-side down normal displacement. These transport direction by normal faulting is significantly different from that at D1 penetrative ductile flow (i.e. top-to-the-W to WNW). It has also been found that these conjugate normal faults are openly folded during the D3 phase about the axes trending NW–SE to E–W and plunging west at low-angles or horizontally, indicating that normal faulting occurred at the D2 phase. D2 normal faults, along which actinolite breccia derived from serpentinite by metasomatism sometimes occurs, perhaps formed under subgreenschist conditions (ca. 250 °C) in relation to the final exhumation of Sambagawa metamorphic rocks into the upper crustal level. The pervasive development of D2 normal faults in the upper structural level suggests that the final exhumation of Sambagawa metamorphic rocks could be caused by “distributed extension and normal faulting (removal of overburden)” in the upper crust.  相似文献   

7.
Abstract The magnitudes of plastic strains of 104 metacherts were determined from the deformed shape of initially spherical radiolarians in the Sambagawa high- P type metamorphic belt of Western Shikoku, Japan. The strain magnitude increases with increasing metamorphic temperature from several per cent to 250%. The a2/a3 ratio of strain ellipsoids in the higher metamorphic grades decreases with increasing metamorphic grade while the a1/a2 ratio increases rapidly. The long axis of the strain ellipsoid for every grade is nearly parallel to the length of the metamorphic belt, suggesting that the flow direction of the synmetamorphic deformation was uniform along the belt. A map of strain zones within the Sambagawa high- P type metamorphic belt reveals that the metamorphic belt underwent a progressive bulk inhomogeneous shear deformation and that the high-grade zones represent a deep-seated boundary shear zone on the accretionary wedge between a subducting oceanic plate and the immobile rigid continental plate.  相似文献   

8.
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower PT) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion.  相似文献   

9.
The Sanbagawa metamorphic belt of southwest Japan is one of the type localities of subduction‐related high‐P metamorphism. However, variable pressure–temperature (PT) paths and metabasic assemblages have been reported for eclogite units in the region, leading to uncertainty about the subduction zone paleo‐thermal structure and associated tectonometamorphic conditions. To analyse this variation, phase equilibria modelling was applied to the three main high‐P metabasic rock types documented in the region – glaucophane eclogite, barroisite eclogite and garnet blueschist – with modelling performed over a range of P, T, bulk rock H2O and bulk rock ferric iron conditions using thermocalc . All samples are calculated to share a common steep prograde PT path to similar peak conditions of ~16–20 kbar and 560–610 °C. The results establish that regional assemblage variation is systematic, with the alternation in peak amphibole phase due to peak conditions overlapping the glaucophane–barroisite solvus, and bulk composition effects stabilizing blueschist v. eclogite facies assemblages at similar PT conditions. Furthermore, the results reveal that a steep prograde PT path is common to all eclogite units in the Sanbagawa belt, indicating that metamorphic conditions were consistent along strike. All localities are compatible with predictions made by a ridge approach model, which attributes eclogite facies metamorphism and exhumation of the Sanbagawa belt to the approach of a spreading ridge.  相似文献   

10.
Yasuyuki Banno 《Lithos》2000,50(4):289-303
The retrograde chemical zonal structure of amphibole in hematite-bearing basic and quartz schists from the higher grade zone in the Saruta-gawa area of the Sanbagawa belt was studied to investigate the relationships between the prograde and retrograde PT paths of the Sanbagawa metamorphism. This amphibole coexists with chlorite, epidote, muscovite, albite, quartz and hematite, and is composed of Al-rich core and Al-poor mantle. The core is fairly homogeneous and has a barroisitic composition. In the mantle part, [B]Na increases with decreasing [4]Al towards the margins, which have winchite–magnesioriebeckite compositions. The barroisite–winchite–magnesioriebeckite composite crystal is sometimes rimmed by actinolite and/or winchite with low [4]Al and [B]Na. The Al-rich core and Al-poor mantle are regarded as prograde and retrograde products, respectively. The retrograde mantle in the Saruta-gawa area: (1) is systematically richer in [B]Na [0.40–1.73 per formula unit (pfu; for O=23)] than that from the same grade zone in the Asemi-gawa area (0.19–0.78 pfu), about 8 km south of the studied area; (2) tends to be [B]Na-poorer (less than 1.73 pfu) than prograde sodic amphibole (up to 1.93 [B]Na pfu) produced in the peak temperature stage from the lower grade zone in the same and other areas; and (3) extends its compositional range towards higher [B]Na and lower [4]Al than prograde-formed amphibole from the same grade zone in the same area. These zonal characteristics imply that (1) the Saruta-gawa samples experienced retrograde metamorphism under higher P/T conditions than the Asemi-gawa samples, (2) the retrograde PT path of the Saruta-gawa area passes on the lower pressure side of the metamorphic field gradient, and (3) the Saruta-gawa samples underwent retrograde metamorphism under higher P/T conditions than the prograde metamorphism. The higher P/T conditions of the retrograde metamorphism suggests an increasing dP/dT of the geotherm during exhumation. Retrograde PT conditions during the formation of magnesioriebeckite can be roughly estimated at 7–8 kbar, 400–450°C based on semi-quantitative phase relations of actinolite–winchite–magnesioriebeckite–barroisite series associated with chlorite, epidote, muscovite, albite, quartz and hematite.  相似文献   

11.
The dominant deformation mechanism during the Sambagawa metamorphism changes from brittle to ductile with increasing metamorphic temperature. The magnitude of plastic strains inferred from the shapes of deformed radiolaria in metachert increases sharply across the boundary between the epidote-pumpellyite-actinolite zone and the epidote-actinolite zone. The synmetamorphic crack density of metachert is an indicator of the contemporaneous brittle strain of rocks, and it decreases sharply as the grade reaches the epidote-actinolite zone. Hence, the ratio of the ductile strain to the brittle strain of metachert decreases rapidly across the transition to the epidote-actinolite zone of the Sambagawa metamorphic belt.
The sharp change of the ductile strain magnitude also takes place at the epidote-actinolite grade in the Shimanto metamorphic belt of Japan, an example of the intermediate pressure facies series of metamorphism. It is concluded that the transition from brittle to ductile deformation takes place at about 300-400°C. and is independent of pressure of metamorphism.  相似文献   

12.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

13.
Hydration reactions are direct evidence of fluid–rock interaction during regional metamorphism. In this study, hydration reactions to produce retrograde actinolite in mafic schists are investigated to evaluate the controlling factors on the reaction progress. Mafic schists in the Sanbagawa belt contain amphibole coexisting with epidote, chlorite, plagioclase and quartz. Amphibole typically shows two types of compositional zoning from core to rim: barroisite → hornblende → actinolite in the high‐grade zone, and winchite → actinolite in the low‐grade zone. Both types indicate that amphibole grew during the exhumation stage of the metamorphic belt. Microstructures of amphibole zoning and mass‐balance relations suggest that: (1) the actinolite‐forming reactions proceeded at the expense of the preexisting amphibole; and (2) the breakdown reaction of hornblende consumed more H2O fluid than that of winchite, when one mole of preexisting amphibole was reacted. Reaction progress is indicated by the volume fraction of actinolite to total amphibole, Yact, with the following details: (1) reaction proceeded homogeneously in each mafic layer; (2) the extent of the hornblende breakdown reaction is commonly low (Yact < 0.5), but it increases drastically in the high‐grade part of the garnet zone (Yact > 0.7); and (3) the extent of the winchite breakdown reaction is commonly high (Yact > 0.7). Many microcracks are observed within hornblende, and the extent of hornblende breakdown reaction is correlated with the size reduction of the hornblende core. Brittle fracturing of hornblende may have enhanced retrograde reaction progress by increasing of influx of H2O and the surface area of hornblende. In contrast to high‐grade rocks, the winchite breakdown reaction is well advanced in the low‐grade rocks, where reaction progress is not associated with brittle fracturing of winchite. The high extent of the reaction in the low‐grade rocks may be due to small size of winchite before the reaction.  相似文献   

14.
张忠炜  张聪  秦雪晴  赵晓轩  申婷婷  邱添  杜瑾雪 《地质论评》2022,68(2):2022030032-2022030032
拉萨地块中东部松多高压变质带是揭示拉萨地体形成与演化过程的重要研究对象。松多变质带记录了古特提斯洋的俯冲和闭合过程。前人对松多地区出露的榴辉岩及围岩开展了大量的岩石学工作,但变质峰期温压条件没有得到很好的限定,温压分布范围较广,且变质演化过程仍存争议。笔者等总结了松多变质带不同地区榴辉岩的岩石学和矿物学特征,汇总了不同计算方法得到的温压条件。通过对比发现,松多高压变质带内榴辉岩的峰期温压条件处于465~880℃,2.5~3.9 GPa的范围,其宽泛的峰期温压条件是由于不同计算方法和折返机制造成的。与传统矿物对温压计相比,变质相平衡模拟方法更适合低温榴辉岩的峰期温压条件及变质过程的限定。  相似文献   

15.
Prograde P–T paths and thermal modelling suggest metamorphism in the Sanbagawa belt represents unusually warm conditions for subduction-type metamorphic belts, and these likely reflect conditions of a convergent margin a few million years before the arrival of an active spreading ridge. Radiometric age data and kinematic indicators of ductile deformation suggest the Sanbagawa belt formed in a Cretaceous convergent margin associated with a plate movement vector that had a large sinistral oblique component with respect to the belt, the East Asian margin. Plate reconstructions for the Cretaceous to Tertiary for this region show that the only plausible plate compatible with such motion at this time is the Izanagi plate. These reconstructions also show that progressively younger sections of the Izanagi plate were subducted beneath eastern Asia, i.e. a spreading ridge approached, until 85–83 Ma when the Izanagi Plate ceased to exist as an independent plate. The major reorganization of plates and associated movements around this time is likely to be the age of major interaction between the ridge and convergent margin. The ridge-approach model for the Sanbagawa metamorphism, therefore, predicts that peak metamorphism is a few million years older than this age range. New Lu–Hf dating of eclogite in the Sanbagawa belt gives ages of 89–88 Ma, in excellent agreement with the prediction. Combining this estimate for the peak age of metamorphism with published P–T-t results implies vertical exhumation rates of greater than 2.5 cm yr−1. This high rate of exhumation can explain the lack of a significant thermal overprint in the Sanbagawa belt during subduction of the ridge.  相似文献   

16.
拉萨地块中东部松多高压变质带是揭示拉萨地体形成与演化过程的重要研究对象。松多变质带记录了古特提斯洋的俯冲和闭合过程。前人对松多地区出露的榴辉岩及围岩开展了大量的岩石学工作,但变质峰期温压条件没有得到很好的限定,温压分布范围较广,且变质演化过程仍存争议。笔者等总结了松多变质带不同地区榴辉岩的岩石学和矿物学特征,汇总了不同计算方法得到的温压条件。通过对比发现,松多高压变质带内榴辉岩的峰期温压条件处于465~880℃,2.5~3.9 GPa的范围,其宽泛的峰期温压条件是由于不同计算方法和折返机制造成的。与传统矿物对温压计相比,变质相平衡模拟方法更适合低温榴辉岩的峰期温压条件及变质过程的限定。  相似文献   

17.
《International Geology Review》2012,54(18):2211-2226
ABSTRACT

To constrain the timing from the accretion to the subduction-related metamorphism of the protolith in the Sanbagawa eclogites, we performed zircon U–Pb datings and REE composition analyses on pelitic schist of the Seba eclogite-facies region in the Besshi area in central Shikoku, Japan. The detrital igneous cores of the zircons show ages from ca. 2000 to 100 Ma, and the metamorphic rims show ca. 90 Ma. These results show that the protolith was accreted at ca. 100–90 Ma, which is significantly younger than the previously reported accretion age of ca. 130 Ma of other eclogite-facies regions in this area. And, the metamorphic rim domains show HREE decrease without Eu anomalies, suggesting that they were formed at ca. 90 Ma eclogite-facies metamorphism. Our results combined with previous reports for the tectonics of the Sanbagawa metamorphic rocks suggest that there are at least two eclogite-facies units with different accretion ages in the Besshi area; ca. 130 Ma unit (Besshi unit) and ca. 100–90 Ma unit (Asemi-gawa unit), which structurally contact with each other. It is likely that the older unit was subducted into a depth of over 50 km and stagnated until the younger unit was subducted to the same depth. Probably, both units were juxtaposed at a mantle depth and began to exhume to the surface at the same timing after ca. 90 Ma. The juxtaposition and exhumation process might have relation to multi-factors such as tectonic erosion along the subduction zone, shallowing subduction angle of the hotter slab, backflow in the mantle and fluid infiltration along exhumation route.  相似文献   

18.
The prograde amphibole that coexists with chlorite, epidote, muscovite, albite, quartz and hematite in Sanbagawa schists was examined to investigate the relationship between the prograde P-T paths of individual rocks and the metamorphic field gradient in the Sanbagawa metamorphic belt, central Shikoku. The amphibole changes from actinolite, through ferri-winchite and crossite, to barroisite and hornblende with increasing grade along the metamorphic field gradient. However, the sequence of prograde amphibole compositions in each sample varies in different mineral zones. The general scheme can be summarized as: magnesioriebeckite-riebeckite crossite in the upper chlorite zone of lower-grade rocks; crossite or glaucophane barroisite in the garnet zone of medium-grade rocks; and actinolite or winchite barroisite hornblende in the albite-biotite zone of higher-grade rocks. Changes of amphibole composition indicate that the prograde P-T path recorded in the higher-grade rocks was situated on the higher-temperature side of that of the lower-grade rocks and on the lower-pressure side of the metamorphic field gradient. The systematic change of P-T paths implies an increasing d P /d T during continuous subduction. These features can be interpreted as documenting prograde metamorphism within a young subduction zone that has a non-steady-state geotherm.  相似文献   

19.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

20.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号