首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geochemical, mineralogical and biological indicators preserved in sediments are widely used to reconstruct past climate change, but proxies differ in the degree to which their utility as climate indicators has been validated via laboratory experiments, modern spatial calibrations, or down‐core comparisons with instrumental climate data. Multi‐proxy studies provide another means of evaluating interpretations of proxies. This paper presents a multi‐proxy assessment comparing 19 sub‐centennially resolved late Holocene proxy records, covering the period 300–1900 AD, from seven Icelandic marine and lacustrine core sites. We employ simple statistical comparisons between proxy reconstructions to evaluate their correlations over time and, ultimately, their utility as proxies for regional climate. Proxies examined include oxygen isotopic composition of benthic and planktonic foraminifera, abundance of the sea‐ice biomarker IP25, allochthonous quartz in marine sediments (a proxy for drift ice around Iceland), marine carbonate abundance, total organic carbon concentration, chironomid assemblages, lacustrine biogenic silica and carbon/nitrogen ratios in lake sediments. Most of the examined proxy records, including temperature and sea‐ice proxies, correlate strongly with each other over multi‐centennial timescales, and thus do appear to record changes in regional climate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
For the reliable assessment of past climate variability, quantitative reconstructions of seasonal temperatures are required. Currently, reconstructions of cold‐season temperatures are scarce, because most biological proxies are biased towards the growing season. Here we test the potential of chrysophyte stomatocysts (or simply ‘cysts’; siliceous resting stages of the golden‐brown algae) as a proxy for cold‐season temperature. Climate reconstructions based on biological proxies are commonly constructed using transfer functions derived from calibration in space. However, the performance of these reconstructions is rarely tested by direct comparison with meteorological data due to limitations of sample resolution or chronological control. We compare a cyst‐based near‐annual reconstruction of ‘date of spring mixing’ from the varved sediments of Lake Silvaplana (Swiss Alps) spanning AD 1870–2004 with climate variables from the same period measured at the lake shore. The high correlation between cyst‐based ‘date of spring mixing’ and cold‐season temperature demonstrates the ability of chrysophyte cysts to archive cold‐season temperature variability. Lake eutrophication, which was extensive during the last 50 years, had no obvious effect on the cyst‐based reconstruction. This study underlines the high potential of chrysophyte cysts as a quantitative proxy for cold‐season climate reconstructions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Corona, C., Edouard, J.‐L., Guibal, F., Guiot, J., Bernard, S., Thomas, A. & Denelle, N. 2010: Long‐term summer (AD751–2008) temperature fluctuation in the French Alps based on tree‐ring data. Boreas, 10.1111/j.1502‐3885.2010.00185.x. ISSN 0300‐9843. On the basis of a dense tree‐ring width network (34 unpublished multi‐centennial larch chronologies), this paper attempts to reconstruct, for the first time, the summer temperatures in the French Alps (44°–45.30°N, 6.30°–7.45°E) during the last millennium. The adaptative Regional Growth Curve standardization method is applied to preserve interannual to multi‐centennial variations in this high‐elevation proxy data set. The proxies are calibrated using the June to August mean temperatures from the last revised version of the HISTALP database spanning the period AD1760–2003 and adjusted to take into account the warm bias before 1850. About 45% of the temperature variance is reconstructed. Despite the use of the newly updated meteorological data set, the reconstruction still shows colder temperatures than early instrumental measurements between 1760 and 1840. The proxy record evidences a prolonged Medieval Warm Period persisting until 1500, with warm periods that resemble 20th century conditions but also cold phases before 1000 synchronous with Swiss glacier advances. The Little Ice Age is rather mild until 1660 if compared with other Alpine reconstructions. Thereafter, summers are 0.7 °C cooler than the 1961–1990 mean until 1920. The maximum temperature amplitude over the past 1250 years is estimated to be 3 °C between the warmest (810s, 1990s) and coldest (1810s) decades. Most of the 20th century is comparable with the Medieval Warm Period.  相似文献   

4.
5.
Amesbury, M. J., Barber, K. E. & Hughes, P. D. M. 2010: The methodological basis for fine‐resolution, multi‐proxy reconstructions of ombrotrophic peat bog surface wetness. Boreas, 10.1111/j.1502‐3885.2010.00152.x. ISSN 0300‐9483. The need for Holocene peat‐based palaeoclimatic records of increased temporal resolution has been widely identified in recent research. The often rapid growth rates of ombrotrophic bogs, when combined with fine‐resolution (i.e. millimetre‐scale) sampling, provide an as yet largely unexploited potential to derive sub‐decadal palaeoclimatic data from this proxy‐archive. However, multi‐proxy, fine‐resolution analyses require changes to standard methodologies, and the application of sampling techniques that are new to peat‐based palaeoclimate research. A peat sampler was custom‐built to allow precise and replicable millimetre‐scale subsampling. Subsequent methodological testing revealed that, irrespective of sample thickness (i.e. resolution), halving the standard sample volume used for plant macrofossil (from 4 cm3 to 2 cm3) and testate amoebae (from 2 cm3 to 1 cm3) analyses and the sample weight used for peat humification analysis (from 0.2 g to 0.1 g dried peat) did not affect the interpretation of the results. A contiguous 1‐mm sampling resolution for plant macrofossil analysis was also tested, but it was found that contiguous 5‐mm samples provided a more reliable background record to fine‐resolution testate amoebae and peat humification analyses. Based on these findings, a standardized and systematic methodological approach was developed, using the custom‐built peat slicer to take millimetre‐scale samples that provide enough sample material for both testate amoebae and peat humification analyses to be performed at 1‐mm resolution. This approach will facilitate the testing of the palaeoclimatic reliability of multi‐proxy, fine‐resolution peat‐based records.  相似文献   

6.
Dendrochronological analysis was applied to subfossil remains of Scots pine (Pinus sylvestris L.) buried in a South Swedish peat deposit. In combination with peat stratigraphy, this approach was explored for its potential to provide information on the local hydrological and depositional history at the site, forming the basis for a regional palaeohydrological analysis. A 726‐year ring‐width chronology was developed and assigned an absolute age of 7233–6508 cal a BP (5284–4559 BC) through cross‐dating with German bog‐pine chronologies, whereas two short additional records of older ages were radiocarbon dated. Registration of growth positions of individual trees allowed assessment of the spatial dynamics of the pine population in response to hydrological changes and peatland ontogeny. Annually resolved growth variability patterns in the pine population reveal several establishment and degeneration phases, probably reflecting fluctuations in bog‐surface wetness. A major establishment phase at 7200–6900 cal a BP reflects the onset of a period of lowered groundwater level, also indicated by increased peat humification, and a development consistent with regional temperature and lake level reconstructions revealed from other proxies. This study demonstrates that subfossil bog‐pine populations may provide annually to decadally resolved reconstructions of local groundwater variability, which are highly relevant in a long‐term palaeoclimatic context. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The Last Termination (19 000–11 000 a BP) with its rapid and distinct climate shifts provides a perfect laboratory to study the nature and regional impact of climate variability. The sedimentary succession from the ancient lake at Hässeldala Port in southern Sweden with its distinct Lateglacial/early Holocene stratigraphy (>14.1–9.5 cal. ka BP) is one of the few chronologically well‐constrained, multi‐proxy sites in Europe that capture a variety of local and regional climatic and environmental signals. Here we present Hässeldala's multi‐proxy records (lithology, geochemistry, pollen, diatoms, chironomids, biomarkers, hydrogen isotopes) in a refined age model and place the observed changes in lake status, catchment vegetation, summer temperatures and hydroclimate in a wider regional context. Reconstructed mean July temperatures increased between c. 14.1 and c. 13.1 cal. ka BP and subsequently declined. This latter cooling coincided with drier hydroclimatic conditions that were probably associated with a freshening of the Nordic Seas and started a few hundred years before the onset of Greenland Stadial 1 (c. 12.9 cal. ka BP). Our proxies suggest a further shift towards colder and drier conditions as late as c. 12.7 cal. ka BP, which was followed by the establishment of a stadial climate regime (c. 12.5–11.8 cal. ka BP). The onset of warmer and wetter conditions preceded the Holocene warming over Greenland by c. 200 years. Hässeldala's proxies thus highlight the complexity of environmental and hydrological responses across abrupt climate transitions in northern Europe.  相似文献   

8.
Recent advances in the chronology and the palaeoclimatic understanding of Antarctic ice core records point towards a larger heterogeneity of latitudinal climate fluctuations than previously thought. Thus, realistic palaeoclimate reconstructions rely in the development of a tight array of well‐constrained records with a dense latitudinal coverage. Climatic records from southernmost South America are critical cornerstones to link these Antarctic palaeoclimatic archives with their South American counterparts. At 54° S on the Island of Tierra del Fuego, Lago Fagnano is located in one of the most substantially and extensively glaciated regions of southernmost South America during the Late Pleistocene. This elongated lake is the largest (~110 km long) and non‐ice covered lake at high southern latitudes. A multi‐proxy study of selected cores allows the characterisation of a Holocene sedimentary record. Detailed petrophysical, sedimentological and geochemical studies of a complete lacustrine laminated sequence reveal variations in major and trace elements, as well as organic content, suggesting high variability in environmental conditions. Comparison of these results with other regional records allows the identification of major known late Holocene climatic intervals and the proposal for a time for the onset of the Southern Westerlies in Tierra del Fuego. These results improve our understanding of the forcing mechanisms behind climate change in southernmost Patagonia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Twentieth‐century summer (July–August) temperatures in northern Finland are reconstructed using ring widths, maximum density and stable carbon isotope ratios (δ13C) of Scots pine tree rings, and using combinations of these proxies. Verification is based on the coefficient of determination (r2), reduction of error (RE) and coefficient of efficiency (CE) statistics. Of the individual proxies, δ13C performs best, followed by maximum density. Combining δ13C and maximum density strengthens the climate signal but adding ring widths leads to little improvement. Blue intensity, an inexpensive alternative to X‐ray densitometry, is shown to perform similarly. Multi‐proxy reconstruction of summer temperatures from a single site produces strong correlations with gridded climate data over most of northern Fennoscandia. Since relatively few trees are required (<15) the approach could be applied to long sub‐fossil chronologies where replication may be episodically low. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial–Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high‐resolution multi‐proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25 µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm?2 a?1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling–Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short‐lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high‐resolution studies based on multi‐proxy approaches and the development of appropriate modern analogues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
High‐resolution multi‐proxy analyses of a sediment core section from Lake Jeserzersee (Saissersee) in the piedmont lobe of the Würmian Drau glacier (Carinthia, Austria) reveal pronounced climatic oscillations during the early late glacial (ca. 18.5–16.0k cal a BP). Diatom‐inferred epilimnetic summer water temperatures show a close correspondence with temperature reconstructions from the adjacent Lake Längsee record and, on a hemispheric scale, with fluctuations of ice‐rafted debris in the North Atlantic. This suggests that North Atlantic climate triggered summer climate variability in the Alps during the early late glacial. The expansion of pine (mainly dwarf pine) between ca. 18.5 and 18.1k cal a BP indicates warming during the so‐called ‘Längsee oscillation’. The subsequent stepwise climate deterioration between ca. 18.1 and 17.6k cal a BP culminated in a tripartite cold period between ca. 17.6 and 16.9k cal a BP with diatom‐inferred summer water temperatures 8.5–10 °C below modern values and a shift from wet to dry conditions. This period probably coincides with a major Alpine glacier advance termed the Gschnitz stadial. A warmer interval between ca. 16.9 and 16.4k cal a BP separates this cold phase from a second, shorter and less pronounced cold phase between ca. 16.4 and 16.0k cal a BP, which is thought to correlate with the Clavadel/Senders glacier advance in the Alps. The following temperature increase, coupled with wet (probably snow‐rich) conditions, caused the expansion of birch during the transition period to the late glacial interstadial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In harsh and treeless environments, shrubs constitute the dominant growth form of woody plants, thus offering the opportunity to extend dendrochronological networks beyond the uppermost and northernmost distribution limits of trees. However, shrub‐based dendrochronology has so far resulted in only a few long and climate‐responsive ring‐width chronologies at such stressful sites, particularly above the alpine tree line. A previous study on an alpine Rhododendron shrub species resulted in <80‐year‐long ring‐width chronologies. Here, we collected Rhododendron aganniphum var. schizopeplum stems from elevations between 4000 and 4500 m a.s.l. on the SE Tibetan Plateau and built six tree‐ring width chronologies. One of them is 401 years long and well replicated from AD 1670 to 2011 (EPS>0.85), thus representing the longest shrub chronology available to date. A principal component analysis (PCA) converted the total variability of all six site chronologies into PCs. Then, the six site chronologies and the PC1, accounting for 65.9% of the total variance of the tree‐ring width, were correlated with time series of monthly climate data. Based on this, the year‐to‐year variability of the ring‐width indices was positively correlated with July temperature, which thus turned out to be the dominant factor controlling growth. Accordingly, such long shrub‐ring chronologies may act as climatic and ecological proxies in treeless environments of the Tibetan Plateau.  相似文献   

13.
A proxy climate record from a raised bog in County Fermanagh, Northern Ireland, is presented. The record spans the interval between 2850 cal. yr BC and cal. yr AD 1000 and chronological control is achieved through the use of tephrochronology and 14C dating, including a wiggle‐match on one section of the record. Palaeoclimatic inferences are based on a combination of a testate amoebae‐derived water table reconstruction, peat humification and plant macrofossil analyses. This multiproxy approach enables proxy‐specific effects to be identified. Major wet shifts are registered in the proxies at ca. 1510 cal. yr BC, 750 cal. yr BC and cal. yr AD 470. Smaller magnitude shifts to wetter conditions are also recorded at ca. 380 cal. yr BC, 150 cal. yr BC, cal. yr AD 180, and cal. yr AD 690. It is hypothesised that the wet shifts are not merely local events as they appear to be linked to wider climate deteriorations in northwest Europe. Harmonic analysis of the proxies illustrates statistically significant periodicities of 580, 423–373, 307 and 265 years that may be related to wider Holocene climate cycles. This paper illustrates how the timing of climate changes registered in peat profiles records can be precisely constrained using tephrochronology to examine possible climatic responses to solar forcing. Relying on interpolated chronologies with considerable dating uncertainty must be avoided if the climatic responses to forcing mechanisms are to be fully understood. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Lake sediment records from the Weerterbos region, in the southern Netherlands, were studied to reconstruct summer temperature and environmental changes during the Weichselian Lateglacial Interstadial. A sediment core obtained from a small lacustrine basin was analysed for multiple proxies, including lithological changes, oxygen isotopes of bulk carbonates, pollen and chironomids. It was found that the oxygen isotope record differed strongly from the other proxies. Based on a comparison with three additional lake sediment records from the same region, it emerged that the oxygen isotope records were strongly affected by local environmental conditions, impeding the distinction of a regional palaeoclimate signal. The chironomid‐inferred July air temperature reconstruction produced inferred interstadial temperatures ranging between ~15° and 18°C, largely consistent with previously published results from the northern part of the Netherlands. A temporary regressive phase in the pollen record, which can be tentatively correlated with the Older Dryas, preceded the expansion of birch woodland. Despite differences between the four pollen records from the Weerterbos region, a comparable regressive vegetation phase that was possibly the result of a shift to drier conditions could be discerned in all of the profiles. In addition, a temporary temperature decline of ~1.5°C was inferred from the chironomid record during this regressive phase. The multi‐proxy approach used here enabled a direct comparison of inferred changes in temperature, vegetation and environmental conditions at an individual site, while the multi‐site approach provided insight into the factors influencing the pollen and isotope records from these small‐scale depressions.  相似文献   

15.
Western Ireland, located adjacent to the North Atlantic, and with a strongly oceanic climate, is potentially sensitive to rapid and extreme climate change. We present the first high‐resolution chironomid‐inferred mean July temperature reconstruction for Ireland, spanning the late‐glacial and early Holocene (LGIT, 15–10 ka BP). The reconstruction suggests an initial rapid warming followed by a short cool phase early in the interstadial. During the interstadial there are oscillations in the inferred temperatures which may relate to Greenland Interstadial events GI‐1a–e. The temperature decrease into the stadial occurs in two stages. This two‐stage drop can also be seen in other late‐glacial chironomid‐inferred temperature records from the British Isles. A stepped rise in temperatures into the Holocene, consistent with present‐day temperatures in Donegal, is inferred. The results show strong similarities with previously published LGIT chironomid‐inferred temperature reconstructions, and with the NGRIP oxygen‐isotope curve, which indicates that the oscillations observed in the NGRIP record are of hemispherical significance. The results also highlight the influence of the North Atlantic on the Irish climate throughout the LGIT. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A micromorphologically based pedosedimentary reconstruction of a 40‐m loess–palaeosol sequence from the western part of the Chinese Loess Plateau provides a sensitive proxy record of changing processes and associated environmental conditions in this region between ca. 150 000 and 10 000 yr BP. Depth functions of more traditional climate proxies, such as magnetic susceptibility, calcium carbonate content and median grain size, support the broad pattern of environmental changes inferred from the micromorphology, although the bulk properties sometimes lag behind or are out of phase with each other and do not match all the fluctuations in the micromorphological record. The reasons for the disparities are probably complex, although they partly reflect differences in response rates and sensitivities of proxies to different climate parameters, as well as genuine out‐of‐phase changes in strength of monsoonal climate controls. This work illustrates the sensitivity of micromorphology in detecting past environmental changes within rapidly aggrading landscapes, and emphasises the need to understand more fully the local and regional significance of bulk proxies currently used in global correlations with marine‐ and ice‐core records. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
《Earth》2007,80(1-2):111-136
Numerous authors have utilised physical properties of Chinese loess and red clay deposits to develop apparently detailed and continuous past climate records from the Miocene into the Holocene. Many of these studies have further suggested that the principal climatic agent responsible for the aeolian emplacement and diagenesis of Chinese loess, the East Asian Monsoon, has fluctuated rapidly on millennial to sub-millennial timescales, in concert with dramatic changes in the North Atlantic (Dansgaard–Oeschger cycles and Heinrich events) and the Western Pacific (El Niño Southern Oscillation). Much of this evidence is based on reconstructions and age models that are tied to assumptions concerning the nature of loess sedimentation and diagenesis, for example, the belief that loess sedimentation can be viewed as essentially continuous. Some authors have however, cast doubt on these assumptions and suggest that the application of radiometric techniques may be required to determine their validity. Recent studies utilising Optically Stimulated Luminescence (OSL) methods have reinforced these doubts and here, OSL dates obtained at 10 cm intervals from three sites along a transect across the Chinese Loess Plateau have been used, in combination with climate proxy evidence, to test the existing assumptions that underpin many palaeoclimatic reconstructions from loess. In this way, the first time-continuous and independently dated late Quaternary climate reconstruction is developed from loess. The data indicate that sedimentation is episodic and that once emplaced, loess is prone to pedogenic disturbance, diagenetic modification and in some cases erosion. The relationships between proxies and sedimentation rates are also assessed and climatic interpretations based on different age models compared. The implications of these findings for reconstructions of climate from loess are explored and comparisons are made between the developed palaeoclimate records and evidence from ice and ocean cores. This exercise also highlights important information concerning the relative influence of forcing mechanisms behind East Asian Monsoon change over the late Quaternary.  相似文献   

18.
Sillasoo, Ü., Mauquoy, D., Blundell, A., Charman, D., Blaauw, M., Daniell, J. R. G., Toms, P., Newberry, J., Chambers, F M. & Karofeld, E. 2007 (January): Peat multi‐proxy data from Männikjärve bog as indicators of late Holocene climate changes in Estonia. Boreas, Vol. 36, pp. 20–37. Oslo. ISSN 0300–9483. As part of a wider project on European climate change over the past 4500 years, a 4.5‐m peat core was taken from a lawn microform on Männikjärve bog, Estonia. Several methods were used to yield proxy‐climate data: (i) a quadrat and leaf‐count method for plant macrofossil data, (ii) testate amoebae analysis, and (iii) colorimetric determination of peat humification. These data are provided with an exceptionally high resolution and precise chronology. Changes in bog surface wetness were inferred using Detrended Correspondence Analysis (DCA) and zonation of macrofossil data, particularly concerning the occurrence of Sphagnum balticum, and a transfer function for water‐table depth for testate amoebae data. Based on the results, periods of high bog surface wetness appear to have occurred at c. 3100,3010–2990,2300, 1750–1610, 1510, 1410, 1110, 540 and 310 cal. yr BP, during four longer periods between c. 3170 and 2850 cal. yr BP, 2450 and 2000 cal. yr BP, 1770 and 1530 cal. yr BP and in the period from 880 cal. yr BP until the present. In the period between 1770 and 1530 cal. yr BP, the extension or initiation of a hollow microtope occurred, which corresponds with other research results from Mannikjarve bog. This and other changes towards increasing bog surface wetness may be the responses to colder temperatures and the predominance of a more continental climate in the region, which favoured the development of bog micro‐depressions and a complex bog microtopography. Located in the border zone of oceanic and continental climatic sectors, in an area almost without land uplift, this study site may provide valuable information about changes in palaeohydrological and palaeoclimatological conditions in the northern parts of the eastern Baltic Sea region.  相似文献   

19.
Fitting a regression line to a set of measurements to investigate the relationship between a proxy estimate of past climate and known climatic parameters is a routine procedure. It is generally accepted that the higher the correlation between parameters, the more reliable the reconstruction. However, there is a lack of published work upon what correlation is the minimum acceptable value. Simulated data was used to demonstrate that the relationship between proxy values and the climatic data are adversely affected by falling correlation, to the point where, in a training set consisting of 100 pairs of temperature and tree-ring proxies, the mean 95% confidence interval width for the reconstructed temperature exceeds the total range of temperatures in the training set at or below r = 0.65. This correlation is typical of that used in many climate-proxy reconstructions, and it suggests that understanding of past climate variability may be somewhat constrained.  相似文献   

20.
Four Nordic temperature proxies based on tree growth at the northern timberline – ring‐width from Sweden and Finland, maximum latewood density from Sweden, and height increment from Finland – were compared. Three indexing methods were used to enhance the low (centennial and above), medium (decadal‐to‐multidecadal) and high (decadal‐to‐interannual) frequencies. The proxies are shown to have a strong temperature signal (common variance) at the interannual‐to‐multidecadal scale, while the multidecadal‐to‐centennial trends are less coherent, perhaps reflecting intra‐regional differences in growing conditions but more likely due to the more noisy regional curve standardization method used to retain the longest trends. Various methods of combining the four proxy series were explored and tested by comparison with four long temperature records from northern Fennoscandia. Only relatively high‐frequency, spline‐indexed series produced consistently positive verification statistics as a reconstruction model for summer temperature using all four proxies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号